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ABSTRACT
Detecting spoofing attacks on a satellite infrastructure is a chal-
lenging task, due to the wide coverage, the low received power
from the satellite beams and finally the opportunistic nature of
radio broadcasting. Although message authentication can be imple-
mented at several communication layers, only a few solutions have
been provided at the physical layer—this one exposing features
that are invaluable for authentication purposes. Currently available
solutions provide physical-layer authentication of the transmitter
by combining deep learning and physical-layer features, thus re-
quiring a long and computationally-intensive training process for
any new transmitter joining the network. In this work, we propose
SatPrint, a solution capable of detecting satellite spoofing attacks by
fingerprinting the noise fading process associated with the satellite
communication channel. Indeed, the fading of a satellite link is dif-
ferent from the one of a terrestrial link—used very often to launch
spoofing attacks—thus allowing one to discriminate between the
two. SatPrint does not require retraining when new transducers
join the network, and does not rely on hardware impairments of
both the transmitter and the receiver. SatPrint has been tested with
real satellite and spoofed terrestrial radio measurements, under
several different scenario configurations. We prove that SatPrint
can effectively discriminate between a satellite transmitter and a
fake terrestrial one, with an accuracy greater than 0.99 for all the
considered configurations.
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1 INTRODUCTION
Wireless signal spoofing is a malicious activity typically associated
with the use of wireless communication technologies, aiming to
generate radio messages with a forged source identifier [21]. Given
the broadcast nature of the radio spectrum, spoofing is particu-
larly effective, making verification of the source of the message
more challenging. Spoofing attacks have been proved to be effective
against several wireless technologies, e.g., LTE [8], 6LoWPAN [11],
AIS [18], and GPS [26]. In fact, many satellite systems emit wireless
signals that are neither encrypted nor authenticated, thus easily
becoming a privileged target for spoofing attacks: an adversary (the
spoofer) can generate fake signals, e.g., by resorting to a Software
Defined Radio (SDR) and publicly available software [12? ]. More-
over, the satellite scenario is particularly prone to spoofing, due to
the predictable trajectories of the satellites (transmitters location),
low level of received power at the ground, possible lack of mes-
sage authentication, and possible tampering/leakage of the secrets
leveraged for enforcing the authentication process. Several tech-
niques have recently been proposed for spoofing detection, mainly
spanning from the application layer to the Physical-layer (PHY), so
involving the usage of secrets shared among the communicating
devices. In this context, PHY device fingerprinting is particularly
promising. Indeed, each device features analog electronic compo-
nents characterized by small differences, not affecting the device
functions but that can be exploited to uniquely identify the device
itself—assuming the existence of a technique able to detect, iden-
tify, and measure such differences. A recent trend involves the use
of Artificial Intelligence (AI)-driven techniques to fingerprint the
radio transducer at the PHY, thus preventing spoofing attacks by
design [13]. Although PHY device fingerprinting was shown to be
effective for authentication, it requires the receiver to build amodel
of each transmitter [20]. Thus, such a technique might not scale
up with the number of possible transmitters, especially in satellite
scenarios.

At the same time, we observe that an effective strategy for spoof-
ing detection in a satellite scenario could consist of the identification
of the type of link experienced by the received [14]. Indeed, if we
rule out state-level adversaries equipped with their own satellite in-
frastructures, an adversary willing to spoof a satellite signal should
deploy its transmitter on the ground and reach the receiver through
a terrestrial link. However, the noise pattern (namely, the fading)
associated with the satellite link is very different from that of a ter-
restrial link, due to the long distances between the communicating
entities and the reduced amount of obstacles [29]. Therefore, the
presence of a spoofer might be detected by only evaluating if the
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Figure 1: Scenario and Adversary model. A user receives fake
signals, either forged or replayed by the adversary. The user’s
challenge is to detect the spoofing attack.

signal has been received from a terrestrial wireless link rather than
from the (expected) satellite link.

Contribution. In this paper, we present SatPrint, a new satellite
spoofing detection solution based on the PHY fingerprinting of
the fading affecting the communication link. In summary, SatPrint
builds a model of the expected pattern of the legitimate satellite
signal received at PHY and uses this model at run-time to identify
the fading process the received signal was subject to, thus identify-
ing the presence of a terrestrial spoofing attack. We tested SatPrint
using real satellite data from the IRIDIUM satellite constellation
and a set of real spoofing attacks, carried out in several different sce-
narios (indoor, outdoor LoS/NLoS, in static and dynamic settings),
achieving outstanding spoofing detection accuracy, i.e., over 0.99
in all the scenarios analyzed. Compared to current solutions, Sat-
Print does not require the generation and management of multiple
transmitter models, making it lightweight and scalable by design.
Finally, we also released the data generated for our performance
assessment as open source to facilitate further research [2].

Roadmap. The paper is organized as follows. Section 2 presents
the scenario and adversary model, Section 3 introduces the prelim-
inaries and the dataset, Section 4 provides the details of SatPrint,
Section 5 provides the performance assessment, Section 6 discusses
additional considerations, Section 7 summarizes related work, and
finally, Section 8 tightens the conclusions and outlines future work.

2 SCENARIO AND ADVERSARY MODEL
Our reference scenario includes three entities: (i) a satellite trans-
mitter, emitting Radio Frequency (RF) signals; (ii) a User, featuring
a satellite receiver; and finally, (iii) an Adversary, able to perform
either a replay (namely,meaconing) or a spoofing attack, as depicted
in Fig. 1. The user can receive the satellite messages either from
the (legitimate) actual satellite network or from a (malicious) ter-
restrial ground station. To discriminate between the two scenarios,
we resort to the analysis of the fading process that affects the re-
ceived signal. Indeed, the satellite link is characterized by a Line-of-
Sight (LoS) link, with a very low Signal-to-Noise Ratio (SNR) (due to
the large distance between the transmitter and the receiver), while
the terrestrial link is affected by a more complex fading process,

due to the presence of obstructions (shadowing) and reflections
(multipath).

We considered four terrestrial scenarios.
• Indoor. We consider a typical office environment, without
a direct LoS between the transmitter and the receiver and
people moving close to the measurement setup.

• Outdoor / Static / LoS. We consider a crowded parking lot
and we deploy both the transmitter and receiver so that LoS
between them was always guaranteed.

• Outdoor / Static / nLoS. We consider the same parking lot as
before, but we deploy the transmitter and the receiver so
that there is Non-Line-of-Sight (NLoS) between them.

• Mobile.We set up the transmitter inside a car and we drive
the car around the receiver in the same parking lot as before.
In this scenario, the LoS might be present or not depending
on the relative position of the transmitter and the receiver
and the presence of moving entities in the parking lot.

We stress that all the bit sequences considered in this work have
been taken from real satellite communications [13]. Such a choice
allows us to emulate Replay Attacks carried out by adversarial
transmitters, as per our adversary model.

AdversaryModel.We consider the adversary, i.e., the terrestrial
spoofing ground station, as a transmitter that can act both indoor
and outdoor. The main purpose of the adversary is to deliver radio
messages to the user by spoofing a satellite transmitter and have
its messages accepted as legitimate. As previously mentioned, we
consider all the authentication mechanisms—if any—compromised,
thus making the terrestrial messages indistinguishable from the
satellite ones when compared at layers higher than PHY.We remark
that this is a reasonable consideration in many real-life satellite-
based use cases, such as GPS, IRIDIUM, and NOAA satellites, to
name a few, where no authentication protocols are in place.

3 BACKGROUND AND MEASUREMENTS
In this section, Sec. 3.1 introduces the IRIDIUM satellite infrastruc-
ture and the dataset and Sec. 3.2 provides preliminary measure-
ments statistics.

3.1 Satellite infrastructure
As a reference use-case, in this paper, we focus specifically on the
IRIDIUM satellite constellation [16]. IRIDIUM was first operated
in 1993 by Motorola, and the project has been recently taken over
by Thales, with a new brand (Iridium NEXT) and the renewal of
the satellites and the communication technology [6]. IRIDIUM is
based on a total number of 66 operational satellites, orbiting on the
Low-Earth Orbit (LEO), approx. 800 km over the Earth’s surface,
moving with a speed of approx. 7 km/s [12]. IRIDIUM satellites
transmit signals in the band [1, 616 − 1, 626.5] MHz, and users can
receive and decode such signals using dedicated equipment, such
as the one made available by Kyocera and Motorola. Nowadays,
due to its global coverage, IRIDIUM is mostly used in the avion-
ics and maritime domain, to allow global connectivity. However,
it is also increasingly adopted in the Internet of Things (IoT) do-
main, especially for low-energy deployments in remote areas [5].
IRIDIUM channels can be divided into system overhead channels,
used for the delivery of system-related information, and bearer
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service channels, used for data exchange. Within the system over-
head channels, the IRIDIUM Ring Alert (IRA) channel is the one
used by receivers on the ground to discover the presence of the
IRIDIUM service and receive information on the channel where
to carry out authentication and exchange data. The IRA channel
uses the center frequency 1, 626.27MHz, and it is a broadcast chan-
nel, where the satellites deliver Differentially-encoded Quadrature-
Phase Shift Keying (DQPSK) messages. Such messages can be up to
103 bytes long and contain the satellite’s unique identifier, the iden-
tifier of the beam emitting the message (the beam ID 0 is reserved
for the satellite radio), the satellite location (latitude, longitude,
and altitude), and additional handover information (through the
Temporary Mobile Subscriber Identity (TMSI) of target wireless
stations). In this paper, for satellite measurements, we used the
dataset released by the authors in [13], containing 589 hours (24
days) of recording of continuous acquisition of IRA messages, for a
total number of 102, 318, 546 physical-layer data in the form of I-Q
samples (1, 550, 281 per satellite, on average). For each received IRA
packet, we have the log of the reception timestamp on the receiver,
the satellite ID, the beam ID, the latitude, longitude, and altitude of
the emitting satellite, and the raw I-Q samples of the IRA packet.
For ease of analysis, in our work, we focus the analysis on satellite
IRA packets, i.e., the ones having beam ID 0. We refer the readers
to [17] and [13] for a detailed explanation of the rationale of I-Q
samples and physical-layer fingerprinting processes.

3.2 Measurement characterization
In this section, we perform a preliminary statistical analysis of the
measurements, evaluating their SNR, signal amplitude and phase.

Signal to Noise Ratio (SNR). The SNR can be computed ac-
cording to [10], i.e., by considering the periodogram of the signal
𝑠 (𝑡) =

√︁
𝑖2 (𝑡) + 𝑞2 (𝑡) and evaluating the ratio between the main sig-

nal component (first harmonic) and the other ones. Figure 2 shows
the probability mass function associated with the SNR computed
on the traces of our five measurement scenarios, i.e., Satellite (black
solid line), Indoor (red solid line), Outdoor with LoS (blue solid
line), Outdoor without LoS (green solid line), and finally, Outdoor
with moving transmitter (magenta solid line). First, we observe that
the SNR associated with the satellite trace is significantly higher
than the other ones: this is mainly due to the antenna and the
pre-amplifier adopted during the collection of the measurements
in [13]. Moreover, note that there are several samples characterized
by the same SNR of the terrestrial measurements, making chal-
lenging to distinguish the legitimate satellite transmitter from a
ground station by simply using the SNR—there are many samples
from the terrestrial scenarios with SNR greater than 0. At the same
time, the value of the transmission power can be easily modified at
the transmitter side, making the SNR an unreliable parameter for
spoofing detection.

Amplitude analysis. An important metric is the magnitude
associated with each I-Q sample, i.e., the amplitude of the phasor
identified by the sample. Without loss of generality, in our analysis,
we consider only the first quadrant of the I-Q plane, while simi-
lar considerations apply to the remaining quadrants. Recall that
the IRIDIUM receiver station contains an Adaptive Gain Control
(AGC) block in the chain. Therefore, we worked on normalized I-Q
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Figure 2: SNR computed on the I-Q samples for each of the
considered datasets.
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Figure 3: Normalized amplitude of the I-Q samples belonging
to the first quadrant of the I-Q plane, considering the five
different scenarios taken into account in this work.

samples, i.e., assuming the expected sample to be at coordinates
[1, 1],—magnitude equal to 1 and phase equal to 𝜋/4. Figure 3 shows
the probability distribution function of the normalized amplitude,
considering all the scenarios. The maximum density is around the
amplitude value of 1, while the indoor scenario has the highest
variance in the terrestrial measurements—this is due to the office
environment, where people move around the transmitter and re-
ceiver, producing significant fading. Finally, we observe that the
satellite link is characterized by remarkable variability.

Phase analysis. We now consider the phase of each phasor
identified by the associated I-Q samples in the first quadrant. As
previously discussed, similar considerations apply to the samples in
the other quadrants. The ideal phase should be 𝜋/4, i.e., the phase
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Figure 4: Phase associated with the phasor of the I-Q samples
belonging to the first quadrant of the I-Q plane, considering
the five different scenarios taken into account in this work.

associated with the phasor with coordinates [1, 1]. Figure 4 shows
the probability distribution function associated with the phasors’
phase. All the distributions are overlapping, confirming the peak at
the value 𝜋/4.

The statistical analysis of the collected traces proves the chal-
lenge of inferring the source (either satellite or ground station)
when considering parameters such as the SNR, the amplitude, and
the phase. Our solution grounds on the intuition of representing
I-Q samples in a spatial domain (images constituted by consecutive
samples) and applying a state-of-the-art anomaly detection algo-
rithm to detect which image belongs to samples coming from a
terrestrial transducer. We provide more details in the next section.

4 METHODOLOGY
Figure 5 outlines the different phases of SatPrint. The first step
involves the conversion of batches of I-Q samples into images,
to then apply anomaly detection using the Fully Convolutional
Data Description (FCDD) network. As shown by [9], the FCDD
can be effectively used to detect the presence of anomalies in an
image, overcoming other state-of-the-art techniques. I-Q samples
are collected from an SDR as complex numbers, where the real
part represents the in-phase component (I) and the imaginary part
represents the quadrature component (Q). The subsequent step
involves the computation of a bi-variate histogram on batches of I-
Q samples, e.g., 𝑁 = 10, 000, by grouping them into bi-dimensional
bins. The tiling should fit the input requirements of the tool used
for classification, which in our case is a CNN, requiring images of
size 225 × 225. We will evaluate the effect of choosing a different
value of 𝑁 in Sec. 6. The result is a matrix (bi-variate histogram),
where the value of each element counts how many I-Q samples
belong to the tile. Each element is considered as the value of a pixel
([0, 255]) of the image, provided as input to the CNN. The output
of the bi-variate histogram can be greater than the maximum pixel

value (255), thus requiring a proper calibration of the I-Q batch size.
SatPrint involves a three-stage process:

• Training. The training process trains the FCDD network
with images associated with the satellite I-Q samples. For all
the scenarios, we trained the network by randomly selecting
all the I-Q samples from all the satellites except two, used
later on for calibration and testing.

• Decision threshold estimation. Here, we perform the
calibration process. We test the trained model against two
datasets: one constituted by I-Q samples from a terrestrial
measurement and another one including I-Q samples of a
satellite one. We highlight that the later satellite dataset has
not been used during the training process. The calibration
process returns an anomaly index for each processed image,
thus allowing the classification of each image as either nor-
mal (constituted by I-Q samples coming from a satellite link)
or anomaly (constituted by I-Q samples coming from a ter-
restrial link). Finally, we considered all the anomaly indexes
and define a threshold minimizing both the FNs and FPs.

• Testing. During the testing phase, we consider two new
image datasets (from both the satellite and terrestrial links)
and we compute the anomaly indexes associated with each
image. Note that both the satellite and terrestrial datasets
considered during this phase have not been used before,
either for training or for calibration. Finally, we use the
previously-defined threshold to categorize the images as
constituted by I-Q samples coming from either the satellite
or the ground station (in different scenarios).

Our data corpus is constituted by the following datasets:
• Satellite data. The satellite dataset includes 66 streams of I-Q
samples, i.e., one per satellite.

• Terrestrial data. For each scenario, we collected five streams
of I-Q samples of 10 minutes each, i.e., one stream for each
TX-RX pair (we used five (5) different transmitting radios
for each scenario). The terrestrial data stream uses the same
modulation (QPSK) and bits of the satellite one, imitating
real replay and spoofing attacks.

In line with the literature, we considered three (3) datasets, i.e.,X,Y
and Z, for the training, calibration, and testing, respectively, of
the CNN. The training set is constituted by a random permutation
of images generated from I-Q samples coming from 64 out of 66
available satellite streams. The calibration dataset Y = {𝑌𝑆 , 𝑌𝑇 } is
constituted by two sets of images, i.e., 𝑌𝑆 being generated from one
of the satellite streams not considered in X, and 𝑌𝑇 being the set
of images generated from one of the terrestrial measures. Finally,
the testing set is represented byZ = {𝑍𝑆 , 𝑍𝑇 }, where 𝑍𝑆 is a set of
images from a satellite stream (considered neither in X nor in Y),
while 𝑍𝑇 is a set of images from the terrestrial scenario— different
from the ones in Y.

5 PERFORMANCE EVALUATION
In this section, we report the performance results of SatPrint in four
different scenarios, i.e, (i) indoor (Sec. 5.1), (ii) outdoor with LoS
(Sec. 5.2), (iii) outdoor with NLoS (Sec. 5.3), and finally, (iv) outdoor
with a moving transmitter (Sec. 5.4). For all the analyzed scenarios,
we computed the threshold (output of the calibration process in
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Figure 5: SatPrint in brief: we considered three steps, i.e., (i) training with images generated from satellite I-Q samples, (ii)
computation of the threshold from the anomaly indexes, so as to minimize False Positives (FP) and False Negatives (FN), and,
(iii) testing sequences of images of both the satellite and ground station, by comparing their anomaly indexes to the threshold.
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Figure 6: Indoor scenario: (a) decision threshold calibration, (b) testing, and (c) resulting confusion matrix.
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Figure 7: Outdoor scenario with LoS: we considered a parking
lot with LoS between the transmitters and the receiver.

Fig. 5) by computing the anomaly indexes on the images coming
from both the satellite and the terrestrial measurements, and then
we applied the following Eq. 1.

𝑡ℎ𝑟 = 𝐸 [𝑚𝑎𝑥 (𝐼𝑆 ),𝑚𝑖𝑛(𝐼𝑇 )], (1)

where 𝐼𝑆 and 𝐼𝑇 are the anomaly indexes associated with the images
of the satellite and terrestrial datasets, respectively. Note that such
a strategy allows for setting the threshold as the average between
the highest anomaly score associated with the satellite images and
the lowest anomaly score from the terrestrial images. This choice
represents the best trade-off between FP and FN, minimizing their
combined value.
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5.1 Indoor Scenario
We consider as indoor scenario a typical crowded office environ-
ment, where the five transmitters are located 30 meters away from
the receiver, without a line of sight (NLoS). We deployed the re-
ceiver inside the office, while we positioned the transmitters in a
corridor, with people moving around. We performed several 10-
minutes long measurements, one for each TX-RX pair, for a total
of five measurements (146𝑀+ I-Q samples for each measurement).
Figure 6 shows the results of (a) the calibration process, (b) the test-
ing, and finally, (c) the confusion matrix associated with the testing
process for the indoor scenario. After the training, we performed
the calibration by computing the anomaly score on two datasets of
images (generated from satellite I-Q samples and from terrestrial
ones). Then, we computed the histograms over the normal (satel-
lite) and anomaly (terrestrial) indexes, represented with blue and
orange bars, respectively, and we computed the detection threshold
(solid red line) as in Eq. 1. Note that the threshold value for this
specific scenario is 𝑡ℎ𝑟 = 2.9 · 10−3. We subsequently computed
the anomaly indexes over two new datasets from a satellite and a
terrestrial measurement. We ran the aforementioned procedure by
randomly permuting the satellite and terrestrial streams 100 times,
to de-correlate our results from specific satellites and terrestrial
transmitters, obtaining Fig. 6(b)—testing phase. Finally, we com-
puted the confusion matrix (Fig. 6(c)) by applying the previously
computed decision threshold 𝑡ℎ𝑟 to the anomaly indexes generated
during the testing. We obtain an accuracy greater than 0.99 and
only 19 FPs out of 150, 370 samples.

5.2 Outdoor Scenario: Static Receiver with Line
of Sight (LoS)

In this section, we consider an outdoor parking lot, where we placed
the five transmitters 60 meters away from the receiver while guar-
anteeing the LoS. As for the previous scenario, we collected five
measurements, i.e., one for each transmitter-receiver pair, lasting
10 minutes each, summing up to 146𝑀+ samples per measurement.
Figure 7 shows the considered scenario and the relative positions
of the transmitters and the receiver. Figure 8 shows the results
from the considered SatPrint phases: (a) calibration of the decision
threshold, (b) testing, and finally, (c) confusion matrix associated
with the testing process. As previously discussed, we considered 100
random permutations of satellite and terrestrial measures (streams),
to de-correlate our results from specific emitters. Moreover, at each
round, we performed a new training process, we generated the
anomaly indexes for the threshold calibration, and we computed
the threshold value according to Eq. 1, considering the anomaly
indexes obtained from the testing process. Fig. 8(c) shows the result-
ing confusion matrix. Note that the specific value of the decision
threshold computed for this scenario is 3.2 · 10−3. The confusion
matrix proves that SatPrint can detect the presence of a terrestrial
spoofer also in an outdoor scenario with LoS between the trans-
mitter and the receiver. In particular, we experienced only 1 FNs
and 5 FPs out of 150, 551 considered samples, resulting in an overall
accuracy greater than 0.99.

5.3 Outdoor Scenario: Static Receiver with NLoS
The second outdoor scenario we consider takes into account the
same parking lot, but without the line of sight (NLoS). In partic-
ular, we placed the five transmitters and the receiver 30 meters
away, while the LoS was obstructed by the presence of multiple
moving cars and people. Note that the described measurement
condition is specifically intended to match an actual live spoofing
attack, where several unpredictable factors might affect the sce-
nario. Figure 9 depicts the scenario and the layout of the equipment
deployment considered for this measurement. Figure 10 shows the
results of the data processing: (a) calibration, (b) testing, and (c)
the resulting confusion matrix. The calibration phase involved the
computation of the detection threshold 𝑡ℎ𝑟 according to Eq. 1, being
equal to 4.3 · 10−3. Figure 10 (b) reports the histogram computed
over the anomaly indexes from the images belonging to the testing
dataset, while Fig. 10 (c) shows the confusion matrix computed
with 𝑡ℎ𝑟 = 4.3 · 10−3. We remark that the presented confusion ma-
trix considers 100 random permutations of satellite and terrestrial
measurements, to de-correlate our results from specific transduc-
ers. Our solution can perfectly detect the presence of a terrestrial
spoofer here, reporting zero FPs and FNs out of 150, 456 images.

5.4 Outdoor scenario: Moving transmitter
In the final scenario, we consider a static receiver and five mov-
ing transmitters deployed in the same parking lot described above.
While the receiver was static on top of a table, the transmitters (one
per time) have been set up inside a car moving around the receiver’s
position inside the parking lot, as depicted in Fig. 11, where the
blue dots represent the GPS coordinates of the trajectory performed
by the transmitter radio. The distances between the transmitters
and the receiver varied between a few meters and 60 meters, with
and without the LoS depending on the presence of random obstruc-
tions due to cars and people moving around. As for the previous
scenarios, we show the decision threshold calibration, the testing,
and finally, the resulting confusion matrix in Fig. 12(a), (b), and
(c), respectively. Similarly, to de-correlate our results from specific
satellite transducers and terrestrial transmitters (device fingerprint-
ing), we run 100 random permutations of satellite and terrestrial
measurements, performing the training and the computation of the
anomaly indexes on disjoint datasets. Then, we considered the his-
tograms associated with the anomaly indexes and we computed the
decision threshold according to Eq. 1, reporting the value 3.1 · 10−4.
We then considered a testing dataset and applied the previously-
computed decision threshold to obtain the confusion matrix, as per
Fig.12(c). Although the discrimination accuracy is still remarkable,
i.e., greater than 0.99, we acknowledge that our solution reports
also 10 FPs and 75 FNs cases out of 150, 421 considered images.
Indeed, the mobile scenario is affected by a fading process that is
much more random than the scenario previously considered. The
I-Q samples are grouped into clouds that are frequently changing
in shape and position, and for a few of them (75 + 10 = 85), it is not
possible to detect them as anomalies compared to the ground truth
(satellite images). However, such cases amount to less than 1%.
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Figure 8: Outdoor scenario, static receiver with LoS: (a) decision threshold estimation, (b) testing, and (c) confusion matrix.
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Figure 9: Outdoor scenario with NLoS: we placed the receiver
30 m away from five transmitters in a crowded parking lot.

6 DISCUSSION
The results presented in the previous sections highlight the suit-
ability of our solution for terrestrial spoofing detection. Also, such
results demonstrate the implicit scalability of our solution with
respect to the number of transmitters. Indeed, as described in Sec. 4,
the testing set Z contains samples of satellites not considered
neither for training nor for testing. Thus, SatPrint can identify le-
gitimate satellites, without the need for training on that specific
satellites. This is a critical distinguishing feature of SatPrint com-
pared to RF fingerprinting approaches such as [13], making our
solution more scalable. We also note that the overhead of SatPrint
is very limited. We considered a server with 512GB of RAM and 2
TESLA M100, where training and calibration took approx. 6 hours,
worst-case. However, such training time is required only once,
before system deployment. SatPrint uses such models for a classifi-
cation task, requiring a time in the order of a few milliseconds on a
standard off-the-shelf laptop.

An important parameter of SatPrint is the number of I-Q sam-
ples per image, i.e., the number of I-Q samples taken into account
when generating each image. This number affects the detection
performance, since a low number of I-Q samples might produce
many images without the features required for the training, cali-
bration and testing. Conversely, a high number of I-Q samples per

image might reduce the image dataset size (the total number of I-Q
samples is fixed) and hide the features in the noise caused by other
I-Q samples. Moreover, the more I-Q samples per testing image, the
more the time to acquire them, and the higher the acquisition time
and energy consumption of SatPrint. Figure 13 shows the accuracy
of SatPrint as a function of the number of I-Q samples 𝑁 per image,
considering the reference case of the static outdoor scenario with-
out the Line of Sight (LoS). Without loss of generality and due to
space constraints, we consider only one scenario (outdoor / static
/ nLoS) while we verified similar results for the other ones. The
accuracy of SatPrint is close to zero when 𝑁 < 5, 000 samples, while
it approaches 1 when 𝑁 > 10, 000—this one being the number of
samples per image adopted in this work. Moreover, considering
that the satellite sample rate is 2Msa/s [13], we highlight that the
time to acquire all the samples belonging to one image is about
5 ms, making our solution very fast. We summarize our findings in
Table 1. Note that the “outdoor moving" scenario is characterized
by temporal variations in the environment: the distance between
the transmitter and the receiver varied between a few meters and
60 meters, while the LoS was affected by (random) obstructions.
The accuracy is very high (> 0.99) for all the considered scenarios,
practically demonstrating the effectiveness of the proposed solu-
tion. Although the thresholds are quite different, their selection is
based on factors well-known in advance at the receiver side, i.e.,
environment (indoor or outdoor), and receiver state (static or mov-
ing). Thus, the receiver can easily set such a threshold according
to current operational conditions, maximizing the performance.
Finally, note that the maximum distance of 60 meters set in our
experiments is due to limitations associated with the maximum
transmission power of the adopted radios.

7 RELATEDWORK
Spoofing and replay (meaconing) of satellites’ messages is increas-
ingly becoming an actual threat [22], [7]. Several recent contribu-
tions investigated PHY fingerprinting in many different forms and
objectives, also with reference to GPS satellites [4]. A few works
already noticed the correlation between the raw received messages
and the experienced channel. To name a few, Shawabkha et al. [1]
analyzed the impact of the wireless channel in the PHY authenti-
cation process, identifying the undesirable effects of the fading on

7
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Figure 10: Outdoor scenario, static receiver with nLoS: (a) decision threshold estimation, (b) testing, and (c) confusion matrix.

Moving

Transmitters

Receiver

Figure 11: Outdoor Moving Scenario. We considered five dif-
ferent moving transmitters and a static receiver in a crowded
parking lot, with the trajectory represented by the blue dots.

Table 1: Scenarios, decision thresholds, and performance.

Scenario Distance [m] LoS
Decision

threshold [×10−3 ] Accuracy

Indoor 30 % 2.9 > 0.99
Outdoor
Static LoS 60 ! 3.2 > 0.99

Outdoor
Static NLoS 30 % 4.3 1

Outdoor
Moving [5-60] !/% 3.1 > 0.99

device identification. However, they did not deepen further their
analysis [19], [23]. Similarly, works such as [15] used the Signal
Quality Monitoring (SQM) as an indicator to detect satellite spoof-
ing. As shown in Sec. 3.2, legitimate and spoofing signals might
appear to have the similar SQM, being instead different when com-
paring the respective I-Q samples. A few works use plaintext or
side-information to infer traffic exchanged in a communication
link. For instance, Trinh et al. [28] classified mobile traffic using
radio-link data, despite encryption. However, this fingerprinting
applies to traffic features. Conversely, our work leverages PHY
features. A few works used the Channel State Information (CSI)
to fingerprint a static communication channel, e.g., [27] and [31].

However, such solutions cannot work in a mobile scenario, like ours.
Location-based fingerprinting has been used also in the avionics
domain, to authenticate aircraft, e.g., by using the Channel Impulse
Response (CIR) [32], and carrier phase [30]. However, as reported
in [24], these approaches require transmitter collaboration. Con-
versely, our approach is completely opportunistic. Finally, other
related works such as [3], [25] leveraged PHY-layer metrics for
GNSS technologies. However, the proposed metrics are specific to
the application scenarios and they cannot be applied in other con-
texts, e.g., any (LEO) satellite constellation. In summary, to the best
of our knowledge, no previous works proposed to detect satellite
spoofing through the fingerprinting of the fading phenomena using
raw I-Q samples. Also, there are no real data available about actual
spoofing attacks on LEO satellites.

8 CONCLUSION AND FUTUREWORK
We proposed SatPrint, a spoofing detection technique for satellite
links, based on the fingerprinting of the fading of the communi-
cation channel to infer the presence of a spoofer (terrestrial trans-
mitter) despite a legitimate satellite transmitter. Differently from
the literature, SatPrint does not require training a new model every
time a new transducer joins the network, since it exploits the unique
features of the fading process of a satellite link—being completely
different from the ones of a terrestrial link. We tested SatPrint using
real satellite (ground-truth) and real terrestrial measurements in
different configurations, taking into account indoor and outdoor
scenarios with different mobility features. SatPrint proved to be
very effective in detecting the presence of a spoofer (link with a
fading process typical of a terrestrial communication link), with
accuracy greater than 0.99 for all the considered scenarios. Fu-
ture work involve the analysis of SatPrint with different satellite
technologies, anomaly detection algorithms, and a wider range of
configuration parameters.
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Figure 12: Outdoor moving scenario: (a) decision threshold estimation, (b) testing, and (c) confusion matrix.
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