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Abstract—1 While various methods exist to implement message
authentication in different communication layers, the physical
layer offers some unique and beneficial features for this purpose.
Existing solutions authenticate transmitters at the physical layer
by merging deep learning with physical-layer attributes, pro-
tecting against impersonation attacks. This approach requires
a lengthy and resource-intensive training phase for every new
transmitter that joins the network. However, for some scenarios
(e.g. satellite communications), characterizing the channel expe-
rienced by the received signal might be effective in detecting
impersonation. In this work, we propose FadePrint, a solution
capable of detecting satellite spoofing attacks by fingerprinting
the noise-fading process associated with the satellite commu-
nication channel. The fading characteristics of a satellite link
differ significantly from terrestrial links (e.g., indoor), making
it possible to distinguish between the two. Unlike other systems,
FadePrint does not require retraining when new transducers are
added to the network. We tested FadePrint with real satellite
and indoor radio measurements and proved that FadePrint can
effectively discriminate between a satellite transmitter and a
fake indoor one, with an accuracy higher than 0.99 for all the
considered configurations.

Index Terms—Physical-Layer Security, Applications of AI for
Security, Wireless Security.

I. INTRODUCTION

Spoofing is a malicious activity where an adversary trans-
mits radio messages with a forged source identifier, thus
posing significant challenges due to the broadcast nature
of the radio spectrum [1]. It is especially effective in the
satellite scenario, where transmitters broadcast messages that
are neither encrypted nor authenticated, e.g., Global Position-
ing System (GPS). The insecurity of such communication
technologies makes them prime targets for spoofers, who can
use tools like Software Defined Radios (SDRs) and publicly
accessible software to generate rogue signals [2], [3]. Factors
such as predictable satellite trajectories, weak ground-level
signal reception, potential absence of message authentication,
and vulnerabilities in authentication secrets make satellites
especially susceptible to this type of attack. Recent solutions
for spoofing detection span from the application layer to
the Physical Layer (PHY) and often involve shared secrets
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between communicating devices. A notable approach is using
Artificial Intelligence (AI) to identify unique radio transducer
fingerprints at the Physical Layer (PHY), which inherently
counteracts spoofing [4]. However, while effective, PHY fin-
gerprinting requires receivers to create a model for each
transmitter, which is not feasible in scenarios with countless
potential transmitters, e.g., satellite communication systems.
However, a promising method of detecting spoofing in satellite
contexts could be to identify the “type of link” experienced
by the received signal. In particular, the noise and fading
patterns of a satellite link differ drastically from those of a
terrestrial link due to longer communication distances and
fewer obstructions [5]. Therefore, determining if a signal
originates from a terrestrial link, instead of a satellite link,
could be an effective way to identify spoofers.
Contribution. In this paper, we introduce FadePrint, a tech-
nique to detect satellite spoofing, leveraging the PHY finger-
printing of the fading process that affects the communication
link. Essentially, FadePrint generates a model that represents
the expected pattern of a genuine satellite signal at the PHY
level. During real-time operations, this model is used to
discriminate the fading process of incoming signals, thereby
pinpointing any terrestrial spoofing attempts. We tested Fade-
Print using real satellite data from the IRIDIUM satellite
constellation and a set of real spoofing attacks, preliminarily
carried out in indoor scenarios. We achieved very promising
spoofing detection accuracy, larger than 0.99. Compared to
current solutions, FadePrint does not require the generation
and management of multiple transmitter models, making it
lightweight and scalable by design.
Roadmap. The paper is organized as follows. Section II
summarizes related work, Section III presents the scenario
and adversary model, Section IV introduces the preliminaries
and the dataset, Section V provides the details of FadePrint,
Section VI provides the performance assessment, and finally,
Section VII tightens the conclusions and outlines future work.

II. RELATED WORK

Spoofing and replay (meaconing) of satellites’ messages
is increasingly becoming an actual threat [6], [7]. Several
recent contributions investigated PHY fingerprinting in many
different forms and with many different objectives, also with



reference to GPS satellites [8]. Some work already noticed the
correlation between the raw received messages and the experi-
enced channel. To name a few, Shawabkha et al. [9] analyzed
the impact of the wireless channel on the PHY authentication
process, identifying the undesirable effects of fading on device
identification. A few works use plaintext or side-information to
infer traffic exchanged in a communication link. For example,
Trinh et al. [10] classified mobile traffic using radio-link data,
despite encryption. However, this fingerprinting applies to
traffic features. Location-based fingerprinting has also been
used in the avionics domain to authenticate aircraft, e.g., by
using the Channel Impulse Response (CIR) [11], and carrier
phase [12]. However, as reported by Strohmeier et al. [13],
these approaches require the cooperation of the transmitter.
On the contrary, our approach is completely opportunistic.
Finally, other related works, such as Calvo et al. [14] and
Tim et al. [15] leveraged PHY-layer characteristics for GNSS
technologies. However, the proposed metrics are specific to the
application scenarios and cannot be applied in other contexts,
e.g., any (LEO) satellite constellation.

III. SCENARIO AND ADVERSARY MODEL

Our reference scenario includes three entities: (i) a satellite
transmitter, emitting Radio Frequency (RF) signals; (ii) a
User, featuring a satellite receiver; and finally, (iii) an Adver-
sary, able to perform replay and spoofing attacks. Users can
receive satellite messages from both the legitimate satellite
network and malicious terrestrial ground stations. To distin-
guish between these, we analyze the fading process that affects
the received signal. Specifically, the satellite link features a
Line-of-Sight (LoS) connection characterized by a low Signal-
to-Noise Ratio (SNR) due to the large distance between
the transmitter and receiver. In contrast, an indoor terrestrial
link experiences a more complex fading process caused by
obstructions (shadowing) and reflections (multipath). It is
important to note that all bit sequences referenced in this
study originate from genuine satellite communications [4].
This approach helps us emulate actual replay Attacks from
adversarial transmitters.

Adversary Model. We consider an indoor spoofing trans-
mitter that sends radio messages pretending to be a legiti-
mate satellite transmitter. We assume that all authentication
mechanisms (if present) are compromised, and the messages
from terrestrial sources become indistinguishable from gen-
uine satellite messages at any layer higher than the PHY.

IV. BACKGROUND AND MEASUREMENTS

The main use case considered in this paper is the IRID-
IUM satellite constellation, initially operational in 1993 under
Motorola and later revamped by Thales, rebranded as Iridium
NEXT with updated satellites and technology. The IRIDIUM
system comprises 66 operational satellites in Low Earth Orbit
(LEO) at roughly 800 km above Earth, moving at an approx-
imate speed of 7 km/s [2]. These satellites transmit within
the 1,616 - 1,626.5 MHz range, and users can receive these
signals using specialized equipment from companies such as

Kyocera and Motorola. Our study employs a dataset from [4],
containing 589 hours (24 days) of IRIDIUM Ring Alert (IRA)
message recordings, totaling 102,318,546 physical-layer I-Q
sample data (averaging 1,550,281 samples per satellite). Each
IRA packet log includes the reception timestamp, satellite and
beam ID, the satellite location details, and the raw I-Q samples.
For a comprehensive understanding of the I-Q samples and the
fingerprinting process at the physical layer, the reader can refer
to [4].

V. METHODOLOGY

Our methodology begins by converting I-Q sample batches
into images and then applying anomaly detection through
a Fully Convolutional Data Description (FCDD) network.
As indicated by Liznerski et al. [16], FCDD is particularly
suitable for detecting image anomalies, surpassing other top-
tier methods. I-Q samples, sourced from an SDR, are repre-
sented by complex numbers: the real part represents the in-
phase component (I), while the imaginary is the quadrature
component (Q). We compute a bi-variate histogram on I-Q
sample batches made up of N = 10, 000 samples, organizing
them into bi-dimensional bins. This pre-processing phase aims
at generating matrices of size 225 × 225 (output of the bi-
variate histogram) which will be the images to be considered
as the input for the convolutional neural network. In fact, each
matrix element is treated as an image pixel value, ranging
from [0, 255], entered into the CNN. If the histogram’s output
exceeds the maximum pixel value of 255, adjustments to the
I-Q batch size are necessary for calibration.

FadePrint involves a three-stage process:
• Training. We train the FCDD network using images

derived from satellite I-Q samples. In every scenario,
the network is trained on I-Q samples from all satellites,
excluding two satellites, later utilized for calibration and
testing.

• Decision threshold estimation. In our calibration phase,
we test the trained model on two datasets: one composed
of I-Q samples from terrestrial indoor measurements
and the other of satellite samples not considered during
the training process. Each evaluated image receives an
anomaly index, enabling its categorization as either nor-
mal (derived from satellite link I-Q samples) or anomaly
(originating from indoor terrestrial I-Q samples). After
assessing all anomaly indices, we establish a threshold
that jointly minimizes False Negativess (FNs) and False
Positivess (FPs).

• Testing. In the testing phase, we evaluate two different
image datasets from satellite and terrestrial links, calculat-
ing the anomaly indices for each image. It is important to
note that the datasets considered during this phase were
used in neither the training nor the calibration stages.
Finally, we consider the threshold computed during the
previous phase, and classify the images based on their
origin, either from the satellite or the ground station,
depending on the scenario.

Our data corpus includes the following datasets:
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• Satellite data. The satellite dataset includes 66 streams
of I-Q samples, i.e., one per satellite.

• Indoor Terrestrial data. We gathered five I-Q sample
streams, each lasting 10 minutes, representing one stream
for every TX-RX pair—we considered five distinct trans-
mitting radios in each case. The indoor terrestrial data
stream employs the same QPSK modulation and bits
as the satellite stream, emulating genuine replay and
spoofing attacks.

In accordance with the existing literature, we used three
datasets: X , Y , and Z for training, calibration, and testing
of the CNN, respectively. The training dataset, X , comprises
randomly shuffled images derived from I-Q samples of 64
of the 66 available satellite streams. The calibration dataset,
Y = YS , YT , is made up of two image sets: YS , created
from a satellite stream not included in X and YT , derived
from terrestrial measurements. The testing dataset is defined
as Z = ZS , ZT , where ZS contains images from a satellite
stream, different from those in X and Y , and ZT is a collection
of images from the indoor scenario, different from those in
Y . Finally, note that we compute the threshold (output of
the calibration process) by computing the anomaly indexes
on the images coming from both the satellite and the indoor
measurements, and then we apply the following Eq. 1.

thr = E[max(IS),min(IT )], (1)

where IS and IT are the anomaly indexes associated with
the images of the satellite and terrestrial datasets, respectively.
This approach of setting the threshold—by taking the average
of the highest anomaly score from the satellite images and
the lowest anomaly score from the terrestrial images—strikes
an optimal balance between False Positives (FP) and False
Negatives (FN). It effectively minimizes the cumulative value
of both, ensuring better accuracy.

VI. PERFORMANCE EVALUATION

In this section, we provide the details of the performance
evaluation of FadePrint. Our indoor test environment con-
siders a typical office space. The setting was specifically
chosen to represent a common indoor environment where
radio transmissions might occur. Within this environment,
the five transmitting devices were set up at a distance of
30 meters from the receiving device. In particular, there
was no direct line of sight (NLoS) between the transmitters
and the receiver—a condition that often exists in real-world
indoor scenarios and can have significant effects on signal
propagation. For our testing setup, the receiver was stationed
inside an office room, whereas the transmitters were placed in
an adjoining corridor that experienced frequent movement of
people. This movement introduces additional variables to our
testing, mimicking potential real-world interference such as the
Doppler effect caused by moving objects. Our measurements
were comprehensive. Each transmitter-receiver (TX-RX) pair
was considered in individual sessions lasting 10 minutes,
leading to a combined total of 50 minutes of measurements
for all pairs. Each session yielded over 146 million I-Q

Receiver

Transmitters

Fig. 1: Indoor scenario: the receiver is deployed 30 meters
from the transmitters in an office scenario, with Non-Line-of-
Sight (NLoS).

samples, providing us with a vast dataset to analyze and
draw insights. Figure 1 provides a graphical representation
of our indoor testing setup. It outlines the floor plan of our
office environment, highlighting the exact positions of both
the transmitters and receiver, as well as the general movement
patterns of people in the corridor. This illustration serves as
a valuable reference point for understanding our experimental
design. The results of our proposed solution are presented in
Fig. 2, where we summarized a comprehensive overview of the
system’s performance. Fig. 2 is organized into three sections,
which capture the three main aspects of our methodology.

Calibration Process. In Fig. 2(a), we report the histograms
associated with the anomaly scores computed on the calibra-
tion datasets. Blue bars depict scores derived from legitimate
satellite transmissions, while the orange bars illustrate those
originating from terrestrial sources, mimicking spoofing at-
tacks. This distinct partitioning of scores between legitimate
and spoofing sources highlights the system’s capability to
differentiate between the two. The calibration process was
instrumental in determining an effective decision threshold,
represented as the solid red line in Fig. 2(a). This threshold
has been computed according to Eq. 1, and is equal to
thr = 2.9 · 10−3.

Testing Phase. Once the model was calibrated, it was
evaluated on a fresh dataset, distinct from the training and
calibration data. Figure 2(b) illustrates the outcome of this
testing phase. To ensure robustness and validate the effec-
tiveness of the model under various conditions, the test was
performed multiple times (specifically, 100 times). For each
iteration, new permutations of satellite and terrestrial streams
were used, effectively enhancing the validity of the results by
eliminating biases related to particular satellites or terrestrial
transmitters.

Confusion Matrix. The third section, Fig. 2(c), offers a
detailed breakdown of the system’s classification outcomes in
the form of a confusion matrix. This matrix captures the true
positives, false positives, true negatives, and false negatives to
provide a granular perspective on the system’s performance.
In particular, we achieved an accuracy of more than 0.99 and
only 19 false positives recorded out of a total of 150,370
samples; the model demonstrates outstanding performance
in distinguishing between genuine satellite transmissions and
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Fig. 2: Indoor scenario: (a) decision threshold calibration, (b) testing, and (c) resulting confusion matrix.

rogue terrestrial ones.
Our results prove the system’s effectiveness in detecting

spoofing attacks coming from indoor scenarios against satellite
transmitters. The rigorous evaluation, both in terms of cali-
bration and repeated testing, reaffirms its efficacy, making it a
promising tool for protecting satellite communications.

VII. CONCLUSION AND FUTURE WORK

We have introduced FadePrint, a satellite spoofing detection
method that leverages the unique fingerprinting of commu-
nication channel fading to distinguish between legitimate
satellite transmitters and spoofers (terrestrial transmitters).
Unlike existing techniques, FadePrint stands out as it does not
necessitate retraining for each new transducer in the network.
This is due to its reliance on the distinctive fading patterns
inherent to satellite links, which are markedly different from
terrestrial links. Our tests, which incorporated real satellite and
indoor terrestrial measurements, demonstrated the effective-
ness of FadePrint, achieving an accuracy over 0.99. Looking
ahead, our future research will include outdoor and mobility
scenarios.
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