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Abstract—1Remote ID (RID) regulations soon applicable
worldwide force drones to broadcast plaintext wireless mes-
sages providing, among others, their current location. However,
malicious drone operators who want to stay stealthy might
disclose RID messages carrying out location spoofing attacks,
i.e., report forged locations, different from the actual ones.
In this paper, we investigate the feasibility of using wireless
localization approaches to detect drones carrying out location
spoofing attacks. To this aim, we propose GhostBuster, a modular
solution for detecting misbehaving RID-enabled drones, and we
evaluate its performance via an extensive experimental campaign
based on open-source data from actual drone flights. Through
the analysis of real data in an area of 1.5km× 2.5km, we show
that systems integrating multiple receivers can take advantage of
multiple RID messages to verify the location reported by RID-
enabled drones with a success rate of 95% up to 364 meters
with 12 receivers. We also show that channel conditions play
a crucial role in defining the maximum achievable spoofing
detection performance.

Index Terms—Drones Security; Mobile Security; Location
Verification.

I. INTRODUCTION

The enormous increase in the number of drones operated
daily forced regulatory bodies around the world to design rules
to regulate drone traffic [1]. In the United States (US), the Fed-
eral Aviation Administration (FAA) promulgated the Remote
Identification of Unmanned Vehicles (RID) regulation [2];
in the European Union (EU), the European Aviation Safety
Agency (EASA) published the amended regulations for remote
identification 2020/1058 [3], and other similar initiatives apply
also for China, Japan and India [1]. All such regulations re-
quire almost any drone (with a few exceptions, see Sect. III) to
regularly broadcast wireless messages including their identity,
current location, and location of the Ground Control Station
(GCS), to name a few [2].

Although effective on paper, RID regulations cannot deal
with the inherent heterogeneity and complexity of the drone
ecosystem, especially compared to traditional aviation. In fact,
aircraft are typically very expensive and operate according to
strict rules. Instead, drones can be very cheap and are typically
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operated by potentially unqualified and untrusted users, who
can use them for malicious purposes [4]. Malicious drone
operators may easily stop transmitting RID messages. In such
a scenario, regular drone detection systems have already shown
remarkable performance in identifying malicious drones [5].
Alternatively, stealthy attackers using drones might continue
to broadcast RID messages, but at the same time carry out
location spoofing attacks, i.e., report a falsified drone location
so as not to trigger alarms on location monitoring systems [6].

Wireless localization solutions might be applied to check
the consistency of the location reported through RID mes-
sages with the one estimated locally through one or multiple
sensors [7]. However, to the best of our knowledge, there
are no studies specifically investigating the capabilities of
wireless localization solutions and drone detection systems to
identify drones that carry out location spoofing attacks via RID
messages. Some solutions are available from research carried
out for aviation security (see Sect. II). However, traditional
recipes for aircraft security do not apply to drone security, due
to the cited differences in the ownership of flying vehicles, the
coverage of the adopted wireless communication technologies,
the transmission power, the height of the flying vehicles, and
the range of drone operations.

Contribution. In this paper, we investigate the feasibility
of using wireless localization solutions to detect RID-enabled
drones carrying out location spoofing attacks. To this end, we
design GhostBuster, a new ad-hoc solution to detect drones
that falsify the location reported in RID messages. Our solution
relies on the comparison of the location reported by drones
within RID messages to the location estimated via local sen-
sors and raises an alarm when the difference between the two
cited locations is anomalous. As a distinctive feature, Ghost-
Buster can be adopted either by standalone users (equipped
with a single receiver) or by safety-critical deployments, i.e.,
Critical Infrastructures (CIs), featuring a network of multiple
sensors. We report the results of an extensive performance
assessment of our solution, both through simulations and
analysis of real drone flight data. We show that, with K = 12
receivers, GhostBuster can detect with 95 % success rate
drones that spoof their location at a minimum distance of
364 m, and such performances improve further with better



data and channel conditions. Overall, our work contributes
to improving the effectiveness of malicious drone detection
and makes a step toward the safe and secure integration of
unmanned aircraft into everyday life.

Roadmap. The rest of this paper is organized as follows.
Sect. II reviews related work, Sect. IV introduces the reference
scenario and adversary model, Sect. V introduces GhostBuster,
Sect. VI reports our extensive performance assessment, and
finally, Sect. VII reports conclusions and future work.

II. RELATED WORK

Many solutions for wireless Radio Frequency (RF) local-
ization are available for a variety of use cases and commu-
nication technologies [7]. In general, two main sources of
information can be used, i.e., the Received Signal Strength
(RSS) and the Time of Arrival (ToA) of wireless signals. ToA
approaches use the timestamps of the RF messages at a set
of receivers to estimate the location of the transmitter. They
have been used, e.g., in wireless networks and underwater
communications [8], [9]. However, such techniques require
either a network of time-synchronized devices or the usage
of dedicated synchronization techniques. In addition, they
require very precise timestamps (at the nanosecond scale) and
a minimum number of 4 devices to be able to localize a target,
being generally more expensive. RSS-based techniques use the
received power level of the messages at one or more receivers
to estimate the location of the transmitter. Compared to ToA
approaches, RSS-based ones do not require synchronizing the
receivers, so being often easier to deploy [10], [11]. At the
same time, RSS-based approaches are usually less precise than
time-based ones, being much more subject to fast fading and
noise (interferences).

In this context, only a few works investigated location
verification of a non-cooperative remote wireless transmitter.
In particular, the problem considered in this work for RID mes-
sages emitted by drones shares similarities with the verification
of the location reported by aircrafts broadcasting Automatic
Depedent Surveillance - Broadcast (ADS-B) messages. In that
research area, many contributions are available based on the
usage of ToA measurements [12], Doppler shift [13], predicted
trajectory information [14], and time ranges [15]. However,
note that the features of the drone ecosystem are very different
from those of the aircraft. First, the transmission range of RID
WiFi messages (up to 15 km) is much lower than the one of
ADS-B messages (500 km), affecting the area where receivers
can be deployed and making many physical-layer solutions
(such as Doppler Shift) hardly applicable. Moreover, while
aircraft trajectories are usually well known, drone flight is
often unpredictable, preventing the use of publicly-available
trajectory information. Also, the WiFi channel (2.4 GHz)
is much noisier and subject to interference than the ADS-
B channel (1.090 GHz), making these solutions potentially
less efficient. On top of this, drones usually fly at much
lower altitudes than aircraft. Thus, the signal is likely more
exposed to shadowing and multipath. Therefore, the solutions
and results achieved in the ADS-B domain do not directly

map to the drone ecosystem. Such considerations motivate
the investigation of the deception capabilities of RID-equipped
drones, making our study novel and interesting on its own.

III. REMOTE IDENTIFICATION OF UNMANNED VEHICLES

The RID rule has been introduced by the US-based FAA in
2021 and is expected to become effective for US airspace in
September 2023 [2]. To increase the control of airspace, RID
forces all Unmanned Aircrafts (UAs) to periodically broadcast
information on the wireless channel regarding their unique
identifier, current location, location of the GCS, current times-
tamp and emergency status [1]. Drones emit such information
as plain text (no mandatory message encryption nor authen-
tication) with a message rate of 1 per second, using WiFi or
Bluetooth [16]. Whenever a drone is not equipped with com-
patible communication technology, it should be retrofitted with
external modules to comply with the regulation. Moreover,
according to clause 89.310(g) [17], the broadcasting device
must optimize its broadcast range, i.e., use the maximum
available transmission power. The described operating mode
is known as broadcast mode. RID also allows for an optional
network mode, where RID messages are delivered over the
Internet to a specific public network address.

Drone remote id protocol (drip). The RID rule only
provided the requirements that drones have to satisfy, but not
the architecture and security objectives. Such aspects have
been the focus of the drip Working Group (WG) by at the
Internet Engineering Task Force (IETF). The goal of drip is
to make RID realizable in practice and reliable, particularly
in emergency situations [18]. The WG formulated several
Request For Comment (RFC) documents, e.g., for drone
requirements, security and privacy issues. To the aim of this
manuscript, we focus on the reference architecture described
in [19]. Accordingly, we denote the drone as the UA and the
wireless receivers as observers, distinguishing between Public
Safety Observers, deployed e.g. by a CI, and General Public
Observers, i.e. standalone users interested in verifying drones’
reported location. As a result, our solution is fully compliant
with the architecture, notation, and requirements of drip.

IV. SYSTEM AND ADVERSARY MODEL

A. System Model

Fig. 1 shows the reference scenario considered in this work.
We consider K wireless RF receivers, namely observers. In
line with the IETF WG drip, such observers can be either
General Public Observers, i.e., standalone receivers deployed
by users to monitor drone traffic for amateur purposes, or
Public Safety Observers, deployed by a system owner, e.g., a
CI operator, around a sensitive target to monitor the wireless
RF spectrum in a given area of interest for public safety
reasons. For the most general case of Public Safety Observers,
we do not assume any synchronization in place between
the observers, nor any mutual coordination. Each observer
monitors the Industrial Scientific Medical (ISM) frequency
band [2.4 − 2.5] GHz and, when detecting any RID packet,
it logs the reported location and the RSS. We consider the

2



Reported
Locations

UAV

No-Fly Area

Observers

Sensitive
Target

Central Server

Spoofing
distance

Alert Area

Fig. 1. Reference Scenario. The observer(s) use the RSS of received RID
packets to verify that the reported locations match the estimated ones.

observers to be able to extract the RSS of a received packet.
We do not care how RSS values are computed (either on
the whole packet or on the preamble of the packet). Finally,
without loss of generality, we consider observers capable of
logging the RSS as an integer value, with no decimal digits.
Such an assumption allows us to consider the worst case of
low-cost receivers. We discuss the usage of more expensive
receivers in Sect. VI-D. In line with the regulations enforced
by the vast majority of CIs, we consider the existence of a
no-fly area around the location of the sensitive target (yellow
line in Fig. 1), where UAs cannot fly. However, the combined
detection range of all the observers is usually larger than the
no-fly area, including also areas where drones are allowed to
fly, possibly with some restrictions. We denote such area as
the alert area. For the case of K public safety observers, we
assume that each observer is connected (wired or wireless) to
a Central Server, where it can report data.

Our scenario also assumes the presence of one or more
UAs, i.e., drones. We consider the drones to be compliant with
the RID rule described in Sect. III. Thus, once every second,
they broadcast messages on the ISM band, reporting their
unique identifier, location, location of the GCS, timestamp,
and emergency status. According to the requirements of RID,
we consider drones that emit messages with the maximum
available transmission power, namely PT . To ensure compli-
ance, the UA is equipped with a Global Navigation Satellite
System (GNSS) receiver, which is used to reliably estimate
both the current location (in terms of latitude lati,t, longitude
loni,t, and altitude alti,t) and local time ts. We do not make
assumptions about the existence and nature of remote control
of the UA, which can be either remotely-piloted or (semi)-
autonomous. For the reader’s convenience, we report the main
notation used throughout this manuscript in Tab. I, together
with a concise description.

In this context, our investigation aims to let observers
collaboratively detect UAs falsifying the current location as
reported within RID messages. We provide more details on
the adversary model below.

B. Adversary Model

In this manuscript, we assume an adversary ϵ, which deploys
a drone to fly over the area monitored by the observers
described in Sec. IV-A. The objective of the adversary is to

TABLE I
NOTATION AND BRIEF DESCRIPTION.

Notation Description
K Number of observers.
PT (Maximum Possible) Transmission power used by the

drone.
N Number of RID messages used for location

verification.
lati,t Latitude reported by the drone i at time t.
loni,t Longitude reported by the drone i at time t.
alti,t Altitude reported by the drone i at time t.

K Number of RID messages used for localization.
τ Threshold for detecting anomalous drones.
ϵ Adversary.

fly over the no-fly area of the CI without being detected by
the network of observers deployed by the CI operators. To this
aim, ϵ can forge the location of the UA reported in the RID
messages (namely, the Reported Location in Fig. 1), shifting
it from the actual location by a given distance (namely, the
Spoofing Distance in Fig. 1), to appear at another location,
outside of the no-fly area. In Sect. VI-D, we also take into
account the ability of the adversary to transmit messages at a
power Pi,t different from the maximum.

Note that a naive adversary might achieve the objective
(undetected violation of no-fly area) by turning off the trans-
mission of RID messages. Such an adversary model is not
in the scope of our work and falls into the general topic
of drone detection, which has been widely investigated in
the literature. On the contrary, our adversary model allows
the drone to still comply with current RID regulations. Such
behavior can possibly be perceived as non-malicious while, in
fact, abusing RID to perform malicious actions. In this context,
our adversary is smarter and stealthier, at the same time, than
one simply turning RID off.

At the same time, we consider the observers and the central
server trusted entities. Thus, we do not consider attacks where
ϵ compromises observers, e.g., carrying out replay attacks.

Finally, note that in the general case, ϵ does not know the
location where the observers are placed. In Sect. VI-D, we
discuss the implications of partial or full knowledge of the
deployment location of the observers.

V. DETECTION OF MISBEHAVING REMOTEID-ENABLED
DRONES

A. Our Solution at a Glance

Fig. 2 reports an overview of our proposed approach.
GhostBuster consists of two phases: training and deploy-

ment. Our solution relies on the deployment of K observers
in the monitored area. Such observers detect and decode RID
packets emitted by drones in the monitored area and compute a
set of ranges, i.e., estimated distances (one for each packet) of
the receiver from the transmitter location. We denote by N the
total number of packets delivered by the drone in a given time
frame T . Each observer delivers the estimated ranges to the
central server, which combines the ranges and estimates the
location of the transmitter. At training time, we acquire a set of
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Fig. 2. GhostBuster at a glance. One or more observers (K) acquire N RID packets emitted by drones, estimate their distances from the drone, and submit
such values to the central server for comparison with the reported locations by means of a threshold value τ .

differences between the actual location(s) of the transmitting
drones and the location(s) estimated through our framework,
which constitutes the expected profile of such differences. The
output of such a training phase is a detection threshold τ , i.e.
the maximum error (in meters) between the estimated location
and the actual location. At deployment time, the estimated
location(s) are compared to the location(s) claimed by the
drone in the RID messages. If the distance between the two is
greater than the threshold τ , we consider the reported location
as anomalous, i.e., not consistent with the observed profile. In
such a case, additional countermeasures can be taken, such as
warning the drone, jamming it or physically shutting it down.
Otherwise, the location reported is considered genuine, and
no further action is taken. Note that our methodology is cus-
tomizable and further extensible with the desired solutions for
range estimation, location estimation, and location evaluation.
The next sections provide details on the algorithms we used for
range estimation (Sect. V-B), location estimation (Sect. V-C)
and location evaluation (Sect. V-D).

B. Range Estimation at the Observer

Let us denote with rk,n the RSS of the n-th packet received
at the observer k. Range estimation techniques allow to obtain
an estimated distance d̄k from rk,n, using a function F . Such
function depends on the specific wireless propagation model
adopted to model the wireless channel. For this work, in line
with the relevant literature on propagation models for UA
communications [20], [21], we adopt the Log-Distance Path
Loss (LDPL) model (we will also validate this choice through
real data in Sect. VI-A). The LDPL model formalizes the path
loss at a given distance from the transmitter (PL(dk)) as a
logarithmic function, as in Eq. 1.

PL(dk) = PT −rk,n = PL(d0)+10γ log10 (
dk
d0

)+Xg(0, σ
2),

(1)

where PL(d0) is the path-loss at a reference distance
d0 from the transmitter, γ is the path-loss exponent, and
Xg(0, σ

2) is a Gaussian random variable with zero mean and
variance σ2 that models the effects of shadowing and multipath
fading [22]. We can rework Eq. 1 to obtain the distance dk,n
of the k-th receiver from the transmitter for the n-th packet,
according to Eq. 2.

dk,n = d0 · 10
(PT −rk,n−PL(d0)

10γ . (2)

Each observer applies Eq. 2 for each received packet,
obtaining a vector of estimated distances, namely d̂k. We
denote with lk,n the location reported by the drone in the
n-th RID message received at the k-th observer, in terms of
latitude, longitude, and altitude, and with all distances Lk

reported by the drone at the k-th observer in the time frame
T . Each observer forwards to the central server the estimated
distances d̂k and the reported locations Lk.

C. Location Estimation

The location estimation building block aims to combine the
various range measurements of the observers to obtain a vector
of estimated locations of the UA, namely L̂k. We first apply an
outlier removal process on the range measurements to filter out
anomalous samples, i.e., estimated distance values that, due
to anomalous noise, are far away from other values. To this
aim, for each n-th packet, we generate the set of all possible
combinations of s distinct observers, denoted as {Ca | 1 ≤
a ≤ A}, where A is the overall number of combinations of s
observers out of K, i.e., A =

(
s
K

)
. For each combination Ca,

we perform multi-lateration using Nonlinear Least Squared
Error (NLSE), according to Eq. 3.

L̂(n,a) = min
e

s∑
si=1

∥∥∥ ˆdsi,n − dsi,n + en

∥∥∥2, (3)
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where ∥·∥ defines the norm-2 operator and en ∈ Xg(0, σ
2)

(recall Eq. 1). For each combination Ca of s observers
(s ≤ K) and n-th packet, such a process yields an estimated
location L̂(n,a) = (x̂(n,a), ŷ(n,a), ẑ(n,a)). Subsequently, we de-
rive the estimated location from the n-th packet by computing
a combined estimate L̂n = (x̂n, ŷn, ẑn) over all combinations,
by computing the statistical median of the corresponding
coordinates, as in Eq. 4.

x̂n = Mediana=1:A({x̂(n,a)}),
ŷn = Mediana=1:A({ŷ(n,a)}),
ẑn = Mediana=1:A({ẑ(n,a)}). (4)

We denote L̂n = (x̂n, ŷn, ẑn) as the vector of estimated
locations.

D. Location Evaluation

In this phase, we evaluate the location reported by the
drone, with the aim of denoting it as genuine or anomalous.
Specifically, for each n-th message delivered by the drone, we
compute the Euclidean distance element-wise, i.e., between
each element in the vector of the reported locations (Ln) and
each element in the vector of estimated locations(L̂n), and we
finally take the median value of the resulting vector, namely
δ, as in Eq. 5.

δ = Mediann=1:N{
√
(xn − x̂n)2 + (yn − ŷn)2 + (zn − ẑn)2}.

(5)
We denote δ as the decision value. Note that, for the case of

a single observer (K = 1), we can only compute ranges and
not estimated locations. Therefore, in this case, the observer
computes the absolute difference between the distance claimed
in the k-th packet (d(n,k)) and the estimated distance (d̂(n,k)),
and then takes the median of all the packets as the decision
value, δ, as per Eq. 6.

δ = Mediann=1:N ({|d̂(n,k) − d(n,k)|}) (6)

We finally compare the decision value δ to the decision
threshold τ , calibrated during training. If δ ≤ τ , the location(s)
reported by the drone is (are) genuine. Otherwise, if δ > τ , the
location(s) reported by the drone is (are) anomalous. In such
cases, many countermeasures can be triggered, e.g., warning
the drone, jamming the communication link with the controller
or the GPS to make the drone land or go back, and finally
physically taking the drone down. The best approach depends
on the specific situation and is beyond the scope of this work.

VI. PERFORMANCE EVALUATION

A. Reference Dataset

To validate our solution, we used the real data provided
as part of the ICMCIS dataset, available publicly at [23].
The dataset was created specifically for a competition held in
September 2020 at the International Conference on Military
Communications and Information Systems (ICMCIS). The
primary objective of the competition was to develop predictive
models and algorithms to accurately predict the future location

TABLE II
FITTING OF FSPL, LDPL, AND TRGR MODELS TO THE DATA IN THE

DATASET AT [23], IN TERMS OF RMSE, MAE AND R2 METRICS.

Propagation
Model

Statistic UA 1 UA 2 UA 3

FSPL
RMSE 4.79 6.81 6.01
MAE 3.47 5.57 4.83
R2 0.62 -0.28 -0.43

LDPL
RMSE 3.45 4.04 3.54
MAE 2.36 2.96 2.59
R2 0.8 0.55 0.5

TRGR
RMSE 11.73 14.56 14.69
MAE 9.82 12.24 12.09
R2 -1.29 -4.83 -7.56

of a drone based on its past movements. The dataset comprises
log files obtained from multiple UAs following predetermined
flight paths, in an area of 1.5km×2.5km [24]. The designated
testing site is a field at Luitenant-general Bestkazerne in De
Peel, Netherlands. Each UA log file provides data points at a
granularity of 100 ms, including a UTC timestamp (in ms), the
current location of the UA (latitude, longitude, altitude) and
instantaneous velocity. The UAs operated within the coverage
range of two distinct radar systems and two RF Direction
Finding (DF) systems, whose log files are also available. For
this research, we use the log files of one of the RF DF systems,
i.e., the one with the fictional name Diana. The log files of
the Diana sensor provide, for each received packet from three
UAs, a UTC timestamp, a target identifier, the Signal-to-Noise
Rate (SNR) in decibels, and the source of the signal, denoted
either as controller or aircraft. As the time on the UAs and the
sensor are synchronized, we can assume that the location of
the UA is delivered wirelessly to the sensor, as in a real RID
scenario. We used the above-described data to experimentally
model the actual channel experienced by an observer. Then, we
used the derived experimental propagation model to run both
simulations (Sect. VI-B) and real data analyses (Sect. VI-C).
Finally, note that we do not consider packet losses.

Channel Estimation. As a first step, we investigated the
most suitable propagation model, i.e., the one that best fits the
real data. To this end, we first converted the SNR values to
RSS values by subtracting the noise floor level, which was
experimentally verified to be approximately 95 dBm. We se-
lected three models for evaluation, according to relevant liter-
ature on air-to-ground propagation modelling [20], [25], [22],
i.e., the LDPL model, the Free-Space Path Loss (FSPL), and
the Two-Ray Ground Reflection (TRGR). Then, we fit the
three candidate models to the empirical data available for
the three UA, using the NLSE method as implemented by
the tool curve fit() of the SciPy Python library [26], and we
evaluated the goodness of fit of each model to the empirical
data using various statistical measures. Specifically, we used
well-known metrics for the evaluation of the goodness of fit of
a model to real-valued data, i.e., the Root Mean-Squared Error
(RMSE), Mean Absolute Error (MAE), and R2 metrics [27].
We summarize the results of our analysis in Tab. II. For all the
UAs, the LDPL model is the one reporting the lowest values of

5



0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

N=1
N=3
N=5
N=7
N=9

error (m)

CD
F

Fig. 3. CDF of the localization error with K = 1 observer, increasing RID
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RMSE and MAE, as well as the highest values of R2, thereby
being the best fit to our data. Finally, we applied the Least-
Squares method to estimate the values of the parameters of
the LDPL model for the three UAs, as reported in Tab. III.

TABLE III
ESTIMATED PARAMETERS OF THE LDPL MODEL FROM REAL DATA.

UA γ d0 [m] PL(d0) [dB]
UA 1 1.35 1 58.07
UA 2 0.9 1 70.82
UA 3 0.84 1 69.88

B. Simulation Analysis

We start our analysis by evaluating the performance of our
solution under controlled conditions, using the model (LDPL)
and parameters obtained from real data. We investigated two
scenarios, i.e., a single observer (General Public Observer) and
multiple observers (Public Safety Observers). We implemented
our solution using Python v3.9 and, for each scenario and
configuration, we performed 1, 000 runs and reported the
results using the Cumulative Distribution Function (CDF), to
show the statistical distribution of the results.

Single Observer Setup. We first focus on the effect of an
increasing number of RID packets on the overall localization
accuracy and its capability to detect drones spoofing their
reported locations. Fig. 3 reports the CDF of the localiza-
tion error (in meters) for the case of a single receiver and
σ = 3.5 dB, considering various RID packets (N ∈ [1, 9])).
For each of the CDFs, we picked the distance corresponding
to the CDF value 1, to have 0 False Negatives, and used it as
the threshold τ of our solution. Figure 4 reports the spoofing
detection rate of our solution where, starting from a random
location, we let the reported locations of the UA drift away
from the actual one with increasing spoofing distance d̃. For
all the results below, the legend in the figures also reports the
value of the threshold τ . Overall, increasing the number of

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
0

0.2

0.4

0.6

0.8

1

N=1, τ=2071m
N=3, τ=1541m
N=5, τ=1338m
N=7, τ=1258m
N=9, τ=1082m

spoofing distance (m)

sp
oo

fin
g 

de
te

c�
on

 ra
te

Fig. 4. Spoofing detection rate with K = 1 observer, increasing RID packets.
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Fig. 5. Spoofing detection rate with a single observer, with various channel
conditions.

used RID packets enhances the spoofing detection capability
of the observer. With 3 packets, the system can detect 95 %
of the attacks only when the drone spoofs its location at
a distance of 2, 452 m from the actual one. Consequently,
such a spoofing detection rate is achieved at a distance of
2, 351 m with 5 packets and 2, 067 m with 9 packets. The
price to pay for such a performance gain is the time to take
a decision, which depends on the overall time to receive such
packets. We also investigated the impact of different channel
conditions. We adopted the same methodology as before for
the spoofing experiment, i.e., for each of the CDFs obtained
for the localization error, we picked the distance corresponding
to the CDF value 1, and we used it as the threshold τ of
our solution. Below, due to the limited available space, we
report only the results of the location spoofing detection rate
in the considered scenarios. We report the results in Fig. 5.
The results demonstrate that channel conditions impact the
capability to detect location spoofing attacks. With the most
challenging conditions σ = 4.5 dB, we achieve a spoofing
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Fig. 6. Spoofing detection rate with with multiple observers, N = 5 packets
and σ = 3.5 dB.
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Fig. 7. Spoofing detection rate with K = 8 observers, N = 5 packets and
various channel conditions.

detection rate of 0.95 with a spoofing distance of 2, 797 m,
while such value reduces to 1, 337 m with better conditions
(σ = 1 dB). For both experiments, the accuracy of the system
is severely limited by the availability of a single observer. We
can overcome such an issue using multiple observers.

Multiple Observers Setup. We first considered N = 5
packets and σ = 3.5 dB, and we varied the number of
deployed observers. Fig. 6 summarizes the results of our
investigation. The results show the positive effect of multi-
ple observers on the spoofing detection rate. With K = 4
observers, the system detects 95% of the spoofing attacks at
a spoofing distance of 1, 199 meters, while the same perfor-
mance is achieved for a spoofing distance of only 270 m with
K = 12 observers. For completeness, we also report below the
spoofing detection rate achieved by our solution with K = 8
observers, with various channel conditions (considering N = 5
packets) and an increasing number of packets (considering
σ = 3.5 dB) in Fig. 7 and Fig. 8, respectively.
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Fig. 8. Spoofing detection rate with K = 8 observers, σ = 3.5 dB and
various number of packets.
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Fig. 9. Spoofing detection rate with real data from Diana sensor, UA 1.

C. Real Data Analysis

Following our previous analysis, we tested our solution on
real data from the sensor Diana of the ICMCIS dataset.

Single Observer Setup. We use the parameters estimated
empirically in Sec. VI-A, and we considered multiple RID
packets, for all the three UAs in the dataset. Figs. 9, 10, and 11
show the results of our analysis. The performances are very
similar to the ones obtained via simulations for σ ≈ 4.5 dB.
With 9 RID packets, to mention some reference results, we can
detect with 95% probability drones spoofing their location at
a distance of 2, 513 meters for UA 1, and 2, 675 meters for
UA 3, while the value for UA 2 is greater than 3 km. Such
large values are due to both the single receiver setup and to
the experienced channel conditions, as shown in Sect. VI-B.

Multiple Observer Setup. We extended our analysis to the
scenario of multiple observers. Since the reference dataset
provides data for one sensor and multiple UAs, we used
such real data to model the channel experienced by multiple
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Fig. 10. Spoofing detection rate with real data from Diana sensor, UA 2.
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Fig. 11. Spoofing detection rate with real data from Diana sensor, UA 3.

observers, randomly placed in the area. In Figs. 12, 13, and 14,
we report the spoofing detection rate for various numbers
of observers considering each of the three UAs individually
and N = 5 RID packets. In line with the previous results,
the worst performance is obtained for the UA 3 where, with
K = 12 observers, we can detect 95% of the spoofing location
reports a distance of 1, 175 m from the actual one. This value
decreases to 364 m for UA 1 with K = 12. Note that
our results are very similar to those obtained by simulations
(Fig. 7) for σ ≈ 4.5 dB. Thus, our performance is significantly
affected by the experienced channel conditions and shows the
potential for significant improvement with less noisy data.

D. Discussion

Impact of RSS quantization In our analysis, we used RSS
values truncated at their integer value, without decimal digits.
This is reasonable when considering generic Commercial
Off-The-Shelf (COTS) receivers. However, CIs with a larger
budget might opt to use Software-Defined Radios (SDRs),
able to log RSS values with the desired accuracy. However,
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Fig. 12. Spoofing detection rate with multiple observers and real data of the
channel experienced for UA 1.
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Fig. 13. Spoofing detection rate with multiple observers and real data of the
channel experienced for UA 2.
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Fig. 14. Spoofing detection rate with multiple observers and real data of the
channel experienced for UA 3.
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using such receivers does not always bring benefits to the CI
operators. In fact, we verified that the use of more accurate
observers improves the spoofing detection rate only when the
level of noise that affects the wireless channel is low. Instead,
when the channel is noisy, they do not enhance performance.

Manipulating the Transmission Power Level. If the ad-
versary ϵ knows the location of an observer, it can rework the
LDPL model to obtain the transmission power to use to let
the observer estimate the desired (fake) location, as in Eq. 7.

P̄T = PT + 10γ ∗ log10(dk/d̄k), (7)

where P̄T is the transmission power required to deceive the
observer, PT is the nominal (legitimate) transmission power of
the UA, dk is the actual distance between the UAV and the k-th
observer, γ is the path loss exponent, and d̄k is the deceiving
distance, i.e., the distance between the fake location that the
drone wants to report and the location of the n-th observer.
However, we first notice that the application of such an attack
requires knowledge of the location of the observer, which is
not trivial. Also, with multiple observers, assuming a drone
using an omnidirectional antenna, Eq. 7 should be satisfied
for each deployed observer distance dk. Thus, ϵ should solve
a system of K equations and one unknown variable, which
is unsolvable by definition. The best ϵ can do is setting
PT to deceive one observer, while the others will estimate
another location, different from both the real and the fake
(desired) one. Since ϵ has no control over the process, there are
overwhelming chances that the difference between the location
reported in the RID message and the estimated one exceeds
τ , leading to detection. Alternatively, ϵ might use multiple
directional antennas, each transmitting crafted messages to
specific observers at known positions. However, bringing
multiple directional antennas on board a drone requires space
and power from the drone, and the probability that ϵ deceives
the system still depends on the mutual displacement among
observers, making the attack highly unreliable.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the feasibility of using
wireless localization techniques to detect drones that perform
location spoofing attacks via RID messages. To this end, we
designed GhostBuster, a modular solution for the detection of
malicious drones that integrates a RSS-based localization tech-
nique. We validated our solution using both simulations and
data from real drone flights. We experimentally demonstrated
that systems comprising multiple receivers can detect finer
location spoofing attacks. At the same time, channel conditions
significantly affect the effectiveness of the system. Overall,
our research shows that wireless localization solutions, if
carefully deployed, can successfully detect drones falsifying
the reported location, taking advantage of currently-enforced
RID regulations. In the future, we plan to extend GhostBuster
by integrating techniques based on the Time of Arrival.
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