
1

MUDThread - Securing Constrained IoT Networks
via Manufacturer Usage Descriptions

Luke Houben∗†, Thijs Terhoeve†, Savio Sciancalepore∗
∗Eindhoven University of Technology – Eindhoven, Netherlands

†Verano®, Eindhoven, Netherlands

Abstract—1The Manufacturer Usage Description (MUD) stan-
dard recently published by the IETF allows manufacturers of
Internet of Things (IoT) devices to equip their products with
device specifications, i.e., information about the expected network
connections of the devices. Such data can be used to detect
unauthorized behavior and mitigate attacks involving IoT devices.
However, at the time of this writing, no previous work integrated
security services based on MUD into constrained IoT networks,
e.g., the ones using the standardized protocol stack Thread.
This paper proposes MUDThread, a framework for integrating
and managing security services into constrained Thread-based
IoT networks using MUD-derived security specifications. Using
MUDThread, IoT devices can provide MUD-related information
at the join of the network using a standard-compliant extension
of the Mesh Link Establishment protocol. At the same time,
the MUD Manager, integrated into the edge border router of
the network, can enforce MUD-based rules to stop unauthorized
network traffic. We deploy a Proof-of-Concept of our solution
using actual nRF5340 and nRF 52833 IoT devices, and we
experimentally verify its limited communication latency (0.012%
more) and capability to detect both incoming and outgoing
unauthorized network traffic during regular operations of a
constrained IoT network.

Index Terms—IoT Security; Constrained Devices; IoT Fire-
wall.

I. INTRODUCTION

In the last years, we experienced the pervasive diffusion
of Internet of Things (IoT) devices in homes, offices, and
industrial environments, with up to 29 billion devices being
deployed by 2030 [1]. At the same time, even more attacks in
the wild exploit the limited processing, storage, and energy
capabilities of such IoT devices to easily take over them
and launch attacks. Notable examples of such attacks include
Stuxnet (2010), and Mirai (2016) [2].

All such attacks exploit the IoT devices’ misconfiguration to
change their regular network behaviour, e.g., letting them act
according to the commands received by a remote command-
and-control server. Taking into account such considerations,
various companies and stakeholders within the Internet Engi-
neering Task Force (IETF) pushed the manufacturers of IoT
devices to define precisely the expected network traffic profile
of the devices, to ease the detection of possibly unauthorized
connections. Such efforts resulted in the definition of the
Manufacturer Usage Description (MUD) standard, allowing

1This is a personal copy of the authors. Not for redistribution. The
final version of the paper will be available soon through the digital library
IEEExplore.

the manufacturers to specify, for each device, the expected
outgoing and incoming network connections [3].

A few contributions in the last years proposed to integrate
the MUD specification in the security management of various
networking environments. For example, Hamza et al. [4] pro-
vide tools for allowing anyone to generate MUD files adhering
to the IETF specification based on network traffic captures,
Yadav et al. [5] applied MUD in a domestic IoT environment,
Feraudo et al. worked on collaborative distributed learning in
untrusted IoT environments [6] and on optimizing the parsing
of MUD rules to alleviate network latency [7], while Morgese
et al. [8] use MUD-rejected traffic from IoT devices in smart
homes to identify network threats at large scale.

However, to the best of the authors’ knowledge, no con-
tributions specifically investigated the integration of MUD in
very constrained networking environments, such as the ones
using the state-of-the-art Thread protocol stack for constrained
devices [9]. Several non-trivial additional challenges emerge
in such scenarios, e.g., how to orchestrate security services
in such constrained networks, enforce security services, and
allow constrained devices to efficiently and timely deliver
device specifications to the entity enforcing security measures.

Contribution. In this paper, we propose MUDThread, a
framework integrating MUD-based security monitoring into
constrained IoT networks running the standardized protocol
stack Thread. MUDThread manages network traffic security
by monitoring all incoming and outgoing connections to the
IoT network via two dedicated processes, namely the MUD
Manager and the MUD Firewall, integrated into the border
router at the edge of the Thread-based IoT network. As
a novel distinctive feature, constrained IoT devices provide
information for retrieving the corresponding device specifica-
tions by integrating MUD-related information into extended
Mesh Link Establishment (MLE) messages, delivered at the
join of the network. We deployed a Proof-of-Concept (PoC)
of our solution using actual constrained devices nRF5340 and
nRF52833 and a border router Raspberry Pi 4B and released
the code as open-source [10]. We also tested the performance
of MUDThread in terms of overhead and attack detection
rates in various configurations. We show that MUDThread can
detect all unauthorized incoming and outgoing connections—
deviating from the MUD profile of the devices—while posing
minimal additional latency on network communications (only
0.012% of the overall network latency). To the best of our
knowledge, MUDThread is the first framework defining and
automating the deployment of MUD on very constrained IoT

2

networks.
Roadmap. The paper is organized as follows. Sect. II

provides preliminaries, Sect. III introduces the scenario and
adversary model, Sect. IV discusses MUDThread, Sect. V
provides results obtained through our experimental PoC and,
finally, Sect. VI concludes the paper and outlines future work.

II. BACKGROUND

Thread and OpenThread. Thread is a recently created
publicly-available specification first released in 2015, aiming
at creating an IoT protocol specification interoperable with tra-
ditional Internet Protocol (IP) networks [11]. Thread is a low-
power, low-latency wireless mesh networking protocol stack
composed of open and well-known standards, including: (i)
Constrained Application Protocol (CoAP) for the application
layer, (ii) User Datagram Protocol (UDP) for the transport
layer, (iii) Routing Protocol for Low-Power and Lossy Net-
works (RPL) for the routing layer, (iV) IPv6 over Low-Power
and Lossy Networks (6LoWPAN) for the adaptation layer, (v)
MLE for network joining and maintenance, and (vi) IEEE
802.15.4 for the PHY and MAC layers. The Thread spec-
ification also describes the network components, including:
(a) the Thread Border Router, which both enables the com-
munication between Thread-based devices and connects the
Thread network to the existing Local Area Network (LAN),
(b) the Thread routers, responsible for handling incoming
and outgoing packets to and from end devices and providing
caching services, and (c) multiple resource-limited and energy-
constrained end IoT devices, which turn on their radio only at
specific times for communication, consuming the least amount
of energy.

To accelerate deployment, Google recently released its own
Thread implementation as open-source, namely OpenThread,
that can be ported to many embedded operating systems [9].
Note that OpenThread only contains the Thread protocol
stack. Since a border router also connects to the LAN, the
OpenThread Border Router (OTBR) requires additional pro-
tocol stacks, e.g., IEEE 802.11 and IEEE 802.3. To this aim,
Google also provides a certified open-source implementation
for the OTBR.

Manufacturer Usage Description. MUD, defined in RFC
8520 [3], is a standard specification aimed at formally describ-
ing the network behavior of IoT appliances [3]. This is usually
possible for IoT devices due to their limited functionalities.
MUD allows the manufacturers of IoT devices to indicate
the devices’ expected outgoing and incoming connections
through a MUD file. It is a JavaScript Object Notation (JSON)
file containing the root object ietf-mud, reporting information
about the intended usage of the device and metadata such as
the version, file location, and file signature [3]. The file might
also contain a field ietf-access-control-list, defining an Access
Control List (ACL) with multiple Access Control Elements
(ACEs), each indicating a service used by the device based on
source/destination IP or port. The RFC 8520 also provides a
few examples. By default, MUD rules can include addresses
of DNS servers used to resolve IP addresses. At the same
time, they do not provide information on the frequency of

communication patterns and (expected) behaviors following
specific interactions on the network.
The network administrators deploying the MUD-enabled de-
vice can download the MUD file at a given link, namely
the MUD Uniform Resource Locator (URL). When a new
device joins the network, the device should transmit the MUD
URL to the entity enforcing access control rules. The standard
specification defines three methods for this: (i) the Dynamic
Host Configuration Protocol (DHCP); (ii) the Link Layer
Discovery Protocol (LLDP); and (iii) via an extension of the
X.509 certificate of the device. The specification also allows
for providing digital signatures to authenticate the MUD URL.
However, no standard mechanism is currently defined to bind
a device identifier with the related MUD file. When IoT
devices are not equipped with MUD files by default, network
administrators can use tools like MUDgee to generate MUD-
compliant files [4].
Although MUD was released in 2019, it has not yet been
widely adopted. It does, however, have the potential to be-
come a powerful tool to aid intrusion detection systems in
preventing IoT attacks by ensuring that devices can only
perform the functions intended by their vendor. Also, the
scientific community [4] and some companies (e.g., Cisco,
see https://github.com/CiscoDevNet/MUD-Manager) are pro-
viding tools for automatically generating MUD files based on
the observed network traffic, favouring MUD adoption.

III. SCENARIO AND ADVERSARY MODEL

Scenario. We consider a generic IoT network, including
several constrained IoT devices delivered by various manu-
facturers. Such devices feature limited computational, storage,
communication, and energy resources. The devices exchange
packets wirelessly on the communication frequency 2.4 GHz
using the IEEE 802.15.4 communication technology. To inter-
act outside of the local IoT network, the devices connect in a
mesh network topology to a Border Router (BR), connected
in turn to a LAN Gateway Router and to the Internet. The IoT
devices run the protocol stack Thread (Sec. II), so integrating
MLE to join the IoT network. The aim of our proposed
framework MUDThread is to orchestrate the deployment of
security services in this network, using the specifications
provided by the IoT devices within MUD files.

Adversary and Threat Model. In this manuscript, we
consider an adversary trying to use remote legitimate IoT
devices exposed over the Internet to launch Denial of Service
(DoS) attacks, similar to the Mirai malware [2]. Accordingly,
we consider that the adversary is using malware that crawls the
web for IoT devices, allowing remote connection on port 23
via the Telnet protocol. When the malware finds such devices,
it performs a brute-force attack on Telnet credentials, using a
pre-programmed list of recurring usernames and passwords to
authenticate successfully. Upon successful authentication, the
malware delivers the IP, username, and password to an external
service in charge of loading malicious software on the device.
Note that the adversary is fully remote, i.e., it does not have
physical access to the devices. Also, it does not have access
to the private keys of legitimate manufacturers, so not being

3

able to forge MUD files. In Sec. V, we test the capability of
MUDThread to identify and reject the described attack.

IV. MUDTHREAD

A. Network Architecture

MUDThread builds on the consideration that enforcing
security via MUD on constrained IoT devices is unfeasible
for many reasons. First, IoT devices can be very constrained
regarding processing, memory, and energy resources, making
it hard to enforce security processes locally. Also, in many
network deployments, users cannot modify the code running
on such devices, e.g., due to discontinued firmware and
software updates. Even when this is possible, users could
neglect to update the device. Moreover, users could decide
not to install firmware upgrades on purpose to avoid service
disruption and minimize short-term business losses. Finally,
the adversary might gain complete control of the device,
stopping the execution of any security-related process. Thus,
MUDThread delegates the management of MUD-based traffic
monitoring to the network BR. Fig. 1 shows the proposed
network architecture.

Public Internet
Thread

Border Router

Ethernet (IEEE 802.3)

Wi-Fi (IEEE 802.11) IoT Device

Thread (IEEE 802.15.4)

MUD Server

MUD Files

+

LAN Gateway
Router

MUD
URL

+

IoT Device

MUD
URL

+

Fig. 1. Overview of the proposed MUDThread network architecture.

It includes the following entities: the IoT devices, the Thread
Border Router, the LAN Gateway Router and the MUD Server.
As discussed above, we consider constrained IoT devices
running a firmware compliant with Thread (Sec. II). Thus, the
manufacturer or the network administrator equips such IoT
devices with a MUD URL, stored in the non-volatile memory,
indicating where it is possible to download the MUD File of
the device. We provide more details on the usage of such
URLs and how IoT devices deliver related information in
Sec. IV-B. The MUD URL redirects to the MUD Server. It
is a file server hosted outside the LAN, managed by one or
more manufacturers of IoT devices. Its purpose is publicly
hosting MUD files to facilitate proper MUD file discovery.
As per the MUD specification, the MUD file contains JSON
entries defining a specific allowed network traffic to or from
the IoT device. The MUD file also integrates a signature, used
for authenticity and integrity. The Thread Border Router sits at
the boundaries between the Thread IoT network and the LAN.
The role of the Thread BR is to convert IEEE 802.15.4 packets
into a suitable format and vice versa, depending on the source
and destination of the packet. In line with many network

deployments, we consider a wireless connection between the
Thread BR and the LAN Gateway Router, e.g., via IEEE
802.11. On the Thread BR, we deploy two additional security
entities: the MUD Manager and the MUD Firewall. The MUD
Manager is the component responsible for managing security
in the Thread network. It listens for incoming MUD URLs
coming from IoT devices and, once received, it contacts the
MUD Server to obtain the MUD File of the specific IoT device.
It processes each MUD file entry to convert them to executable
ACEs. The Thread BR also includes the MUD Firewall, i.e., a
process responsible for enforcing the ACEs generated by the
MUD Manager through an allow-listing approach. For each
incoming (outgoing) packet to (from) the local IoT network,
the MUD firewall checks if the source (destination) IP and
port of such packet match any entry in the overall ACL.
If so, it allows the packet to reach its intended destination.
Otherwise, it drops the packet. It may also log such events
locally. Finally, the connection between the Thread BR and the
public Internet is provided through the LAN Gateway Router.
It converts wireless IEEE 802.11 packets into IEEE 802.3
(Ethernet) packets, and viceversa. The LAN Gateway router
and the Thread BR often coexist in the same device, e.g., a
multi-protocol gateway. In such cases, the connection between
the Thread BR and the LAN Gateway router is only logical
(wired).

B. Protocol Flow

Fig. 2 shows the sequence of operations required to enable
the MUD Firewall.

Thread Border Router

Gateway MUD Manager MUD Firewall

IoT Device MUD ServerLAN Gateway Router

1. Beacon

2. MLE Parent Request
(MUD URL) 3. Forward MUD URL 4. Request MUD File

5. Find MUD File
of IoT Device

6. Deliver MUD File

7. Convert MUD
rules to ACEs

8. ACEs

9. Generate
ACL

10. pkt [src_ip,
src_prt, dst_ip,

dst_prt]
11. Forward [src_ip, src_prt, dst_ip, dst_prt]

12. Check [src_ip, src_prt,
dst_ip, dst_prt] to ACL

13. Deliver pkt

Fig. 2. Sequence diagram of the operations required by MUDThread to create
the ACL (top) and enforce security (bottom).

1) The Thread BR periodically broadcasts beacon mes-
sages, reporting identification and synchronization de-
tails of the Thread network.

4

2) At the reception of the beacon, the IoT device multicasts
the MLE Parent Request message to All Routers in the
Thread network to look for a suitable parent node for
uplink traffic. The payload of the MLE Parent Request
message includes the MUD URL of the device, option-
ally encrypted and authenticated via IEEE 802.15.4.

3) The Thread BR decodes the MLE Parent Request, ex-
tracts the MUD URL, and forwards it to the MUD
Manager.

4) The MUD Manager checks the validity of the MUD
URL. If it is valid, it uses it to contact the MUD Server,
requesting the corresponding MUD File.

5) The MUD Server looks for the requested MUD File. If
the file does not exist, it stops execution.

6) The MUD Server returns the MUD File to the MUD
Manager.

7) The MUD Manager evaluates the freshness and validity
of the MUD file and, if necessary, converts each entry
in the file into an ACE.

8) The MUD Manager forwards the ACEs to the MUD
Firewall.

9) The MUD Firewall inserts each ACE into the ACL.
10) At runtime, upon sensing, the IoT device delivers a data

packet to the Thread BR, indicating a specific destination
IP address and port.

11) The Thread BR extracts the source IP, source port,
destination IP and destination port and forwards them
to the MUD Firewall.

12) The MUD Firewall checks if any of the ACEs allows the
IoT device with the given source IP and port to generate
traffic towards the specific destination IP address using
the specified destination port.

13) If an ACE exist, allowing for such traffic, the data packet
is forwarded using the specific destination IP and port.
Otherwise, the MUD Firewall rejects the packet. Note
that operations similar to the latest two steps occur when
the Thread BR receives a packet from the Internet to
one of the IoT devices. In such a case, the data packet is
forwarded to the IoT device only if an ACE on the MUD
Firewall allows communication between the source IP,
source port, destination IP and destination port specified
in the packet.

Note that the IoT devices deliver the MUD URL in the
MLE parent request only until joining to the Thread BR. The
MUD Manager is responsible for keeping MUD files updated
without further involvement by IoT devices. With the increased
number of deployed IoT devices, additional ACEs may be
added to the MUD firewall, increasing its complexity. The
problem goes beyond MUDThread, and many different firewall
engineering solutions are available in the literature [12]. All
such solutions are compatible with MUDThread and can be
integrated to improve efficiency.
Also, note that MUD files of a given device can change,
e.g., due to a firmware update. At the reboot following such
firmware updates, the MUD manager in MUDThread checks
if an updated MUD file is available and possibly deploys it.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

A. Proof-of-Concept Implementation

Fig. 3 depicts the architecture of our experimental PoC,
using an actual IoT network.

OpenThread Network

nRF5340

Raspberry Pi 4B
(Border Router and LAN Gateway)

nRF5340

nRF52833nRF5340

IEEE 802.3 (Ethernet)

IEEE 802.3

Internet

MUD Server
MUD File

+

IEEE 802.15.4 SPI

Fig. 3. PoC of MUDThread.

Hardware Details. We pick the board nRF5340 provided
by Nordic Semiconductor as the IoT device of our PoC.
It features a single ARM Cortex M-33 processor running
at 64 MHz, 256 kB of Flash, 64 kB of SRAM, ultra-
low-power modes for battery longevity and various wireless
communication technologies, including Thread. As the Thread
BR, we use a Raspberry Pi (RPi) model 4B. It is a tiny
embedded computer equipped with a Cortex-A72 processor
running at 1.5 GHz, featuring 4 GB of preinstalled Random
Access Memory (RAM) and a micro-SD slot for storage.
It also includes an IEEE 802.11b/g/n interface, allowing it
to serve as the LAN Gateway Router. As the RPi does not
feature a Thread-compatible module, we connect to the RPi
the board nRF52833 provided by Nordic Semiconductor. This
board features a single ARM Cortex M-33 processor running
at 64 MHz, 512 kB of Flash, 128 kB of SRAM, and Thread
communication capabilities. Finally, as for the MUD server,
we deployed a simple web server using NGINX on a remotely
located Virtual Private Server (VPS) running Linux Ubuntu
20.04.

Software Details. We used OpenThread as the Thread-
based Operative System (OS) running on both the nRF5340
and the nRF52840 IoT device. Within OpenThread, we keep
the default configuration and modify the default implementa-
tion of the MLE protocol in a standard-compliant way, to allow
the IoT device to include the MUD URL in the MLE Parent
Request. In particular, we created a new Type-Length Value
(TLV) with Type 27 to convey the MUD URL. On the Thread
gateway, we extended the default OTBR implementation with
the code necessary to extract the MUD URL and deliver it to
the MUD Manager. The communication between the Thread
Gateway and the MUD Manager (hosted on the Raspberry Pi)
uses the protocol SPI [13]. Moreover, the Raspberry Pi runs
the Raspian OS. Finally, the MUD server can be reached only
via HTTPs by browsing for the URL https://mud.verano.nl/.
We generated MUD files for all IoT devices and made them
available at a specific MUD URL. Interested readers can
find an example MUD File at https://mud.verano.nl/example/

5

mud.json. To emulate an actual IoT network deployment, we
let the IoT devices exchange traffic according to a real-world
use case, i.e., a deployment of smart solar panels provided by
Verano. To this aim, we consider that all domain addresses
have already been resolved, so as to work with pre-resolved
IP addresses. Finally, as per the MUD Firewall, we use the
tool ip6tables, enabled by default on the Raspberry Pi. This
firewall can filter IPv6 packets coming in on the host device.
Using the allow rules from the MUD Manager, the tool creates
an executable bash script containing ip6tables commands to
set the firewall chains accordingly. We release the source code
of MUDThread as open-source at [10].

B. Experiments

We run several experiments to evaluate the overhead and
performance of MUDThread.

We first evaluate the overhead of MUDThread in terms
of additional network latency. To this aim, we let one IoT
device deliver 10, 000 ICMP Echo Requests packets (allowed
according to the related MUD file). We record the Round
Trip Time (RTT) of the packets with and without MUDThread
and netfilter6 active to evaluate the latency introduced by our
solution. Fig. 4 summarizes our results. Without MUDThread

No
M

UDThr
ea

d

 n

et
filt

er
6

of
f

M
UDThr

ea
d

ne
tfil

te
r6

 o
ff

No
M

UDThr
ea

d

 n

et
filt

er
6

on

M
UDThr

ea
d

ne
tfil

te
r6

 o
n

Configuration

0

10

20

30

40

50

R
T

T
 [m

s]

Fig. 4. RTT Overhead of MUDThread.

and netfilter6, the average RTT value is 42.59 ms. Such
value grows to 45.24 ms by only activating netfilter6 and
finally amounts to 45.79 ms by also enabling MUDThread, so
reporting an overhead of only ≈ 1.2%. Such results confirm
the viability of our approach, as it affects the network latency
negligibly. Consider that, according to IEEE 802.15.4, Thread-
based IoT networks with a single border router can transmit
up to one packet every time slot, with a time slot lasting
no less than 10 ms [14], i.e., approximately the same as the
average latency experimentally measured. Also, consider that
the devices do not use all the time slots to transmit/receive
packets due to energy consumption constraints and that similar
ACEs for multiple IoT nodes can be grouped, leading to a sub-
linear latency increase with the number of nodes (see [12] for

an overview of firewall engineering solutions). Thus, even in
the worst case where all devices connected to the network
have different MUD files, we expect the network size not
to generate significant scalability issues. To provide further
insights into such aspects, we measured the RTT of 1, 000
packets when deploying multiple MUD entries on the MUD
Firewall, i.e., 10, 100, and 1,000 rules, respectively. We
configured such rules in the worst-case scenario, i.e., the entry
applying to our IoT device is always the last in the chain.
We report in Fig. 5 the median and 99 percentiles of all our
tests. We notice that the increase in the number of entries

10 100 1000
No. of Rules in the MUD Firewall

0

50

100

150

R
T

T
 [m

s]

Median
99-Percentile

Fig. 5. RTT Overhead of MUDThread when the MUD firewall is configured
with various rules.

in the MUD firewall causes a slight increase in the median
RTT. With 10 rules, the median RTT is 39.79 ms, increasing
to 40.45 ms with 100 rules and 41.72 ms with 1, 000 rules.
Accordingly, also the 99-percentiles increase from 144.52 ms
with 10 rules to 157.18 ms with 1, 000 rules. Still, such values
remain limited, confirming the viability of our approach.

We also test the correct functionality of MUDThread, i.e.,
the capability to stop attacks exploiting anomalous network
traffic while allowing legitimate traffic. To this aim, we took
inspiration from the Mirai malware [2]. Mirai could spread
quickly because of weak credentials on IoT devices and
networks, which is an issue relevant as of today [15]. In
particular, the hosts infected by Mirai were chosen by choosing
random IP addresses. Once a publicly available IoT device
was identified, the Mirai malware brute-forced the Telnet
credentials. Telnet runs by default on port 23. Mirai used a
pre-programmed list of recurring usernames and passwords to
authenticate to the host over Telnet. If the host responded and
authentication was successful, the IP, username, and password
were sent to another service in charge of uploading malicious
software. Such software allows to keep control over the device,
even with dynamic IP addressing in place. Although many
IoT devices block incoming Telnet connections by default
today, Mirai still uses the same approach today to target IoT
devices in the wild. We use the same attack model of Mirai
to test the capability of our approach to reject connections

6

falling outside their MUD profile, independent of whether
such attempts are successful or not. Thus, we generated a
script that, on input a given IP address, runs a brute-force
attack on the Telnet credentials. Then, we test the capability
of MUDThread to detect and reject such a brute-force attack.
We also mix such (malicious) traffic with benign traffic, i.e.,
ICMP Echo Requests. Our solution successfully blocks all
Telnet connections to the IoT device, since Telnet traffic is
not allowed to that device. Also, 100% of the ICMP echo
requests are correctly delivered over the Internet.

Finally, we test MUDThread in a scenario where the end
IoT device is compromised and tries to deliver custom network
traffic to an IP address outside the local IoT network. This
test aims to verify the capability of MUDThread to detect and
reject malicious traffic flowing out of the IoT network. Also, it
considers a scenario where MUDThread is deployed after the
IoT network has been operational for some time, and thus,
some devices may have already been compromised. To this
aim, we instruct the end IoT device to deliver several ICMP
echo requests to an IP address randomly chosen outside the lo-
cal IoT network with an increasing packet injection rate, i.e., 1,
10, and 100 packets/sec. Note that, in this experiment, we look
at the effect of the traffic rate on MUDThread, independently
of how many devices generate the traffic. We test our PoC
without and with MUDThread, respectively, and report the
average results in Tab. I. For all the tested configurations, when

TABLE I
RESULTS OF EXPERIMENT 3: UNAUTHORIZED OUTGOING PACKETS.

Injection Rate
[pkt/sec] 1 10 100

MUDThread Active No Yes No Yes No Yes
Packets To send 500 500 5,000 5,000 50,000 50,000
Packets received at
the MUD Firewall 500 500 5,000 5,000 48, 640 49, 155

Discarded Packets 0 500 0 5,000 0 49,155
% Discarded Packets 0 100 0 100 0 100

active, MUDThread correctly identifies anomalous traffic. The
detection occurs as the destination IP address is not in the
MUD file corresponding to the device, allowing MUDThread
to identify and reject such packets. We also notice that, by
increasing the packet injection rate, some packets are dropped
(with 100 packets/sec, we instructed the IoT device to send
50, 000 packets, but on average, 48, 640 and 49, 155 were
effectively delivered without and with MUDThread in place,
respectively). We observe such phenomena both with and
without MUDThread, and they are attributable solely to the
congestion of the IEEE 802.15.4 communication link. These
experimental findings further confirm that MUDThread does
not generate scalability issues.

Therefore, MUDThread can be integrated seamlessly into
an IoT network with minimal overhead in terms of network
latency. Also, MUDThread can effectively block all unautho-
rized traffic of the constrained IoT network.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed MUDThread, a framework for
enforcing security services at the edge of constrained Thread-
based Internet of Things networks. As a distinctive feature,

MUDThread leverages MUD profiles, i.e., specifications pro-
vided by the manufacturers of IoT devices describing the
expected traffic flows of such devices. Taking such information
into account, MUDThread defines the protocol flow necessary
to convert MUD files into actionable ACEs, enforced by the
MUD manager on the Border Router at the edge of the local
IoT network. We deployed a Proof-of-Concept of MUDThread
using actual nRF5340 and nRF52833 IoT devices using the
OpenThread (OT) protocol stack and a Raspberry Pi 4B as the
OTBR, and we tested extensively the performance of our solu-
tion, both in terms of incurred overhead and security guaran-
tees. We demonstrate that leveraging MUD files, MUDThread
can detect any traffic flow falling outside of the expected
behavior of the IoT device (both incoming and outgoing traffic
flows) while posing a minimal toll on network communica-
tion performance. Our future work will focus on integrating
MUDThread into complex network topologies including multi-
OTBR networks in extensive operational facilities.

ACKNOWLEDGEMENTS

This work has been supported by the INTERSECT project,
Grant No. NWA.1162.18.301, funded by the Netherlands
Organisation for Scientific Research (NWO). Any opinions,
findings, conclusions, or recommendations expressed in this
work are those of the author(s) and do not necessarily reflect
the views of NWO.

REFERENCES

[1] D. Wang, D. Chen, B. Song, et al., “From IoT to 5G I-IoT: The next
generation IoT-based intelligent algorithms and 5G technologies,” IEEE
Communications Magazine, vol. 56, no. 10, pp. 114–120, 2018.

[2] M. Antonakakis, T. April, M. Bailey, et al., “Understanding the Mirai
Botnet,” in 26th {USENIX} Security Symposium, 2017, pp. 1093–1110.

[3] E. Lear et al., “Rfc 8520: Manufacturer usage description specification,”
https://www.rfc-editor.org/rfc/rfc8520, accessed: 9-Apr-2024.

[4] A. Hamza, D. Ranathunga, H. Gharakheili, et al., “Clear as MUD:
Generating, validating and applying IoT behavioral profiles,” in Proc.
Workshop on IoT Security and Privacy, 2018, pp. 8–14.

[5] P. Yadav, V. Safronov, and R. Mortier, “Enforcing Accountability in
Smart Built-in IoT Environment using MUD,” in Proceedings of the
6th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, 2019, pp. 368–369.

[6] A. Feraudo, P. Yadav, V. Safronov, et al., “CoLearn: Enabling federated
learning in MUD-compliant IoT edge networks,” in Proc. ACM Inter-
national Workshop on Edge Systems, Analytics and Networking, 2020,
pp. 25–30.

[7] A. Feraudo, D. Popescu, A. Diana, et al., “Mitigating IoT Botnet DDos
Attacks through MUD and eBPF based Traffic Filtering,” in ACM
International Conference on Distributed Computing and Networking,
2023.

[8] L. Morgese Zangrandi, T. Van Ede, T. Booij, S. Sciancalepore, L. Allodi,
and A. Continella, “Stepping out of the MUD: Contextual threat infor-
mation for IoT devices with manufacturer-provided behavior profiles,”
in Proc. Annual Computer Security Applications Conference, 2022, pp.
467–480.

[9] H.-S. Kim, S. Kumar, and D. E. Culler, “Thread/OpenThread: A
Compromise in Low-Power Wireless Multihop Network Architecture
for the Internet of Things,” IEEE Communications Magazine, vol. 57,
no. 7, pp. 55–61, 2019.

[10] L. Houben, T. Terhoeve, and S. Sciancalepore, “Open Source Code of
MUDThread,” https://github.com/LukeHouben/ot-mudthread, accessed:
9-Apr-2024.

[11] Thread Group, “Thread 1.3.0 Specification,” https://
www.threadgroup.org/ThreadSpec, accessed: 9-Apr-2024.

[12] A. Voronkov, L. Iwaya, L. Martucci, et al., “Systematic literature review
on usability of firewall configuration,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1–35, 2017.

7

[13] R. Quattlebaum and J. Woodyatt, “Spinel Host-Controller Protocol,”
Internet Engineering Task Force, Internet-Draft draft-rquattle-spinel-
unified-00, May 2017, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-rquattle-spinel-unified/00/

[14] S. Sciancalepore, P. Tedeschi, U. Riasat, and R. Di Pietro, “Mitigating
Energy Depletion Attacks in IoT via Random Time-Slotted Channel
Access,” in IEEE Conf. on Communications and Network Security.
IEEE, 2021, pp. 10–18.

[15] S. Furnell, “Assessing website password practices–Unchanged after
fifteen years?” Computers & Security, vol. 120, p. 102790, 2022.

BIOGRAPHIES

Luke Houben is a Master’s graduate at TU/e, Eindhoven, specializing in
information security. After graduating in 2023 from TU/e in Eindhoven,
Netherlands, he started working as a project manager at CodeFlex. His
interests lie in the fields of IoT and network security, cryptography, and their
implementations.

Thijs Terhoeve , with a background in Mechanical Engineering, has seam-
lessly integrated this knowledge with passions for Electrical Engineering and
Computer Science. This unique blend has propelled him through various IT
roles across multiple firms, where he consistently innovated at the intersection
of mechanics, electronics, and software. Lauded for his analytical mindset and
adaptability, Thijs continues to pioneer advancements that bridge traditional
and digital engineering realms.

Savio Sciancalepore is Assistant Professor at TU/e, Eindhoven, Netherlands.
He received the PhD degree in 2017 from Politecnico di Bari, Italy. From
2017 to 2020, he was Postdoctoral researcher at HBKU, Doha, Qatar. His
research interests are in network security and privacy in IoT, Mobile and
Wireless Networks.

