
Lightweight Privacy-Preserving Proximity Discovery
for Remotely-Controlled Drones

Pietro Tedeschi
pietro.tedeschi@tii.ae

Technology Innovation Institute
Abu Dhabi, United Arab Emirates

Savio Sciancalepore
s.sciancalepore@tue.nl

Eindhoven University of Technology
Eindhoven, Netherlands

Roberto Di Pietro
roberto.dipietro@kaust.edu.sa

King Abdullah University of Science
and Technology - CEMSE - RC3

Thuwal, Saudi Arabia

ABSTRACT
Discovering mutual proximity and avoiding collisions is one of the
most critical services needed by the next generation of Unmanned
Aerial Vehicles (UAVs). However, currently available solutions ei-
ther rely on sharing mutual locations, neglecting the location pri-
vacy of involved parties, or are applicable for fully autonomous
vehicles only—leaving unaddressed Remotely-Piloted UAVs’ safety
needs. Alternatively, proximity can be discovered by adding sensing
capabilities. However, in addition to the cost of the sensors, the
complexity of integration, and the toll on the energy budget, the
effectiveness of such solutions is usually limited by short detection
ranges, making them hardly useful in high-mobility scenarios.
In this paper, we propose LPPD (an acronym for Lightweight Privacy-
preserving Proximity Discovery), a unique solution for privacy-
preserving proximity discovery among remotely piloted UAVs based
on the exchange of wireless messages. LPPD integrates two main
building blocks: (i) a custom space tessellation technique based on
randomized spheres; and, (ii) a lightweight cryptographic primitive
for private-set intersection. Another feature enjoyed by LPPD is
that it does not require online third parties. LPPD is rooted in sound
theoretical results and is supported by an experimental assessment
performed on a real drone. In particular, experimental results show
that LPPD achieves 100% proximity discovery while taking only
39.66 milliseconds in the most lightweight configuration and drain-
ing only the 5 · 10−6% of the UAV’s battery capacity. In addition,
LPPD’s security properties are formally verified.
ACM Reference Format:
Pietro Tedeschi, Savio Sciancalepore, and Roberto Di Pietro. 2023. Light-
weight Privacy-Preserving Proximity Discovery for Remotely-Controlled
Drones. In Annual Computer Security Applications Conference (ACSAC ’23),
December 4–8, 2023, Austin, TX, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3627106.3627174

1 INTRODUCTION
Unmanned Aerial Vehicles (UAVs), often referred to as drones, are
today widespread in the industry and commercial domains, thanks
to enhanced mobility, autonomy, and flexibility features [28]. Ap-
plications based on the use of UAVs can be found today in several
heterogeneous fields, including Health, Delivery, Transportation,
Industrial, and Military use-cases, to name a few [26].

ACSAC ’23, December 4–8, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Annual Computer
Security Applications Conference (ACSAC ’23), December 4–8, 2023, Austin, TX, USA,
https://doi.org/10.1145/3627106.3627174.

According to recent forecasts by leading specialized companies,
drone deliveries accounted for 210,000 units in 2020, and they are
expected to more than double by 2023 [33]. Also, leading goods
delivery companies such as Amazon are already offering services
for automated goods transportation via drones (e.g., Amazon Prime
Air [12]), paving the way for a future where hundreds of UAVs will
be flying at the same time, to perform different automatic tasks. In
this context, UAVs should integrate effective solutions for proximity
discovery and collision avoidance to safeguard the safety of flying
devices, goods, and especially people [38] [14].

Many solutions have been proposed in the last decade for prox-
imity discovery and collision avoidance on UAVs (see Sec. 6 for a
detailed overview). However, besides being effective only in scenar-
ios with specific constraints, very few currently available solutions
entirely took location privacy into account. Indeed, when moving
according to a particular mission, the source and destination lo-
cations of the UAVs are private. The leakage of previously-cited
information might lead to the discovery of sensitive details, such as
the location of the storage centers of the delivery company or the
association between specific goods and customers. In addition, the
delivery of real-time location information (as recommended by the
recent Remote ID specification [11]) to potentially untrusted enti-
ties might also lead to the capture of the UAVs, leading to relevant
economic losses [29], [35].

In this context, most solutions that allow detecting approaching
collisions without sharing UAVs locations require dedicated sensors.
Moreover, these sensors usually work only in a very short range
around the devices and might be ineffective when vehicles move at
a significant speed. To tackle these issues, some recent proposals,
i.e., the ones by the authors in [30] and [25], provided solutions
for fully autonomous vehicles based on the precise knowledge of
future trajectory points (timestamps and locations). However, such
solutions suffer from two main drawbacks: (i) they require several
over-the-air messages—hence taking a toll on the energy budget—;
and (ii) they cannot be applied for Remotely-Piloted Aircraft Sys-
tems (RPASs), where remote pilots issue unplanned commands for
movements to the UAV at run-time (see Sec. 6).

Thus, the existing literature currently misses an effective privacy-
preserving proximity discovery solution for remotely-piloted UAVs,
not relying on plain-text location sharing and not requiring knowl-
edge of the destination of the mission in advance, but at the same
time also being reliable and efficient in scenarios characterized by
high dynamicity and mobility.

Contribution. In this paper, we propose LPPD (an acronym for
Lightweight Privacy-preserving Proximity Discovery), a privacy-
preserving protocol for proximity discovery on remotely-piloted

https://doi.org/10.1145/3627106.3627174
https://doi.org/10.1145/3627106.3627174


UAVs. LPPD allows two remotely-piloted UAVs in direct wireless
visibility to exchange messages and identify, in a very short time, if
they are at risk of collision. To this aim, LPPD customizes and ap-
plies a solution for private-set intersection in the context of location
privacy, extending such a technique with a novel space tessellation
logic suitable for proximity detection. Overall, LPPD allows the two
UAVs to privately discover mutual proximity to let them agree on
different safe paths and protect the safety of involved devices and
people.
We tested the performance of LPPD via extensive simulations and
real experimentation on a prototype running on the popular 3DR-
solo drone [5]. Our results indicate that LPPD guarantees the detec-
tion of all possible collisions at run time while requiring negligible
time and energy overhead on commercial UAVs. For instance, when
configured to work with the minimum acceptable security level
of 80 bits, LPPD takes only 39.66 ms to complete, draining just
≈ 14.15 mJ of energy, i.e., the 5 · 10−6 % of the UAV battery. LPPD
can also achieve stronger security guarantees at the cost of a little
increase in the incurred overhead.
Overall, LPPD emerges as a customizable, flexible, and effective
solution for privacy-preserving proximity detection.With reference
to the latest Remote ID regulation, LPPD makes a step forward, pro-
viding not only remote identification but also proximity detection
and added location privacy. Thus, LPPD could be the ideal solution
in contexts where a Remote ID-like regulation is to be adopted, e.g.,
in military and tactical use-cases, or as further advancement of the
Remote ID rules itself, with LPPD merging the best of both worlds:
accountability and privacy.

Roadmap. The paper is organized as follows. Sec. 2 introduces
the scenario and adversarial model, Sec. 3 provides the details of
LPPD, Sec. 4 discusses the security features of LPPD, Sec. 5 provides
an extensive performance assessment of LPPD via simulations and
experiments on a real UAV, while Sec. 6 discusses the related work
and highlights the advantages of LPPD compared to the current
state of the art. Finally, Sec. 7 tightens conclusions and draws future
work.

2 SCENARIO AND ADVERSARY MODEL
This section introduces our scenario (Sec. 2.1), adversary and threat
models (Sec. 2.2).

2.1 Scenario
We consider 𝑁 UAVs, namely, 𝑢1, 𝑢2, . . . , 𝑢𝑁 , distributed in a given
geographical area, as depicted in Fig. 1.

We assume that the UAVs are RPASs, piloted remotely via either
an RF controller or commands issued at a ground control station and
delivered to the UAV via a mobile cellular connection. The specific
way the UAVs are piloted is out of the scope of this contribution.

Each UAV features a Global Navigation Satellite System (GNSS)
module, such as a Global Positioning System (GPS) receiver, which
allows it to receive geo-location data from dedicated satellites to
estimate its location, with a maximum accuracy of 𝛿 meters. Such
inaccuracy might be different based on the environment where
the drone is located, e.g., higher in urban areas than in open rural
areas. Based on the current location, the drone might calibrate the
value of 𝛿 accordingly. Overall, LPPD assumes the availability of a

Figure 1: Reference Scenario.

stable GPS location, i.e., we assume that, at run time, the current
almanac, initial position, Ephemeris and time information of the
GPS are all set. We acknowledge that the time-to-first-fix might be
significant, but this is usually achieved at the turn-on of the drone.
At the same time, such information is already available when the
drone is accomplishing its intended mission.

We also assume that each UAV is equipped with a wireless com-
munication technology, e.g., Wi-Fi, allowing communication on
one of the Wi-Fi channels available in the unlicensed frequency
band 𝐵 = [2.4 − 2.5] GHz, to communicate with other UAVs in the
same area. Note that this is a standard feature, not only for UAVs
but also for commercial Wi-Fi access points, known often with the
name of Wi-Fi Direct [18].

We assume each UAV would like to detect other vehicles nearby
to avoid physical collisions using a dedicated network protocol.
Moreover, we assume that any UAV is unwilling to disclose its
actual and future locations, as they are private data that could
reveal sensitive information. Indeed, if exposed, such information
can be used for several malicious activities (see Sec. 2.2).

Without loss of generality, we assume that the UAVs does not
feature a persistent Internet connection. Although many UAVs
can integrate hardware modules to provide continuous Internet
connectivity, such a connection might not always be available, e.g.,
due to operations in remote locations. Thus, once deployed, the
UAVs cannot consistently rely on any online third parties.

Moreover, we assume that the UAVs integrate an instance of
our proximity detection protocol, namely LPPD. Therefore, the
UAVs can exchange wireless messages to detect co-location and
take appropriate maneuvers to avoid collisions. To this aim, each
UAV 𝑢𝑖 stores a private/public key pair used for protocol execution.
It is reasonable to assume that this key pair has been released and
installed by the manufacturer, together with a public key certificate
𝐶𝑖 . Note that the certificate is installed at manufacturing time and
does not force any third party to be available online during the
execution of the protocol. Although we acknowledge that maintain-
ing a unique Public Key Infrastructure (PKI) worldwide might be
impractical—though doable, especially if provided by international
aviation-related bodies, like IATA—, that is certainly possible on a
regional level, which is where our scenario mainly applies. Finally,
we report the used notations in Tab. 7 (Annex).

2



2.2 Adversary and Threat Model
The adversary assumed in our work, namely A, features both pas-
sive and active features. On the one hand, A is a global eavesdrop-
per, equipped with multiple antennas to detect and decode packets
transmitted on the same channel(s) used by the legitimate UAVs,
i.e., 𝐵 = [2.4 − 2.5] GHz. We also assume that A can deploy the re-
ceiving antennas in a vast geographical area, possibly synchronize
such receivers, and then process the receiving packets locally. In
this sense, we also assume that A has no particular constraint in
its computational capabilities. On the other hand, we assume that
A also features active capabilities. Thus, it can replay the recorded
packets or inject its own (forged) packets, possibly falsifying some
ad-hoc fields in the messages (i.e., the sender identity), to avoid
detection by intrusion detection systems.

Moreover, we assume thatA does not have any prior knowledge
of the location of the UAV at the time of the attack. Neither it can
visualize the UAVs a priori, before the execution of the protocols
discussed below—if one of the two above-cited conditions apply,
there would be no possible defense. At the same time, note that
the above-referred conditions do not restrict the application of
our solution for proximity detection. Indeed, Wi-Fi radio chipsets
adopted on UAVs feature reception ranges up to 7 km. As reported
in [34] and [20], attacks against Wi-Fi systems can be conducted
even outside their nominal reception range, making our solution
valuable for proximity detection even when the two communicating
entities are not in mutual visibility.

We also assume that A could consist of multiple colluding en-
tities, possibly geographically distributed over the reception area.
For example,A could adopt RSS or time-based wireless localization
techniques to estimate the location of a particular transmitter by re-
sorting to an entirely passive receiver infrastructure [2, 23]. In this
context, we highlight that A does not have any prior information
about the number of UAVs in its reception area. When coupled with
the minimal amount of wireless messages transmitted by LPPD, the
previous feature nullifies any attempts byA to localize the emitting
source through dedicated time-based or power-based localization
techniques.

The threats enabled by A to the UAV can be manifold, e.g.: (i)
disrupt the flight of the UAV, e.g., via jamming or spoofing; (ii)
capture the UAV, e.g., via a net; and, (iii) inferring on the travelled
trajectory, e.g., to deduce if it has visited (or not) a specific location.
Note that for (i) and (ii), the adversary implicitly needs to know
the UAV position, while for (iii), such a need is a truism. Our solu-
tion helps keep such data private, thwarting the cited adversary’s
objectives.

3 THE LPPD PROTOCOL
In this section, we first introduce our solution in a nutshell (Sec. 3.1).
Then, we explain the logic of the space tessellation (Sec. 3.2) and,
finally, we describe the full LPPD scheme (Sec. 3.3).

3.1 Our Solution in a Nutshell
Our solution, namely LPPD, allows two directly connected UAVs,
in mutual radio visibility, to know if they are in proximity, i.e., at
risk of immediate physical collision, without revealing their actual
locations. To this aim, LPPD builds on two enabling components.

The first component is a random one-time space tessellation gener-
ated by the client UAV (i.e., the UAV initiating the protocol), which
allows us to uniquely identify the geographical area where the UAV
is and its neighborhood, without revealing the location of the UAV.
We provide the details of the logic of the space tessellation used
in LPPD in Sec. 3.2. The second enabling component of LPPD is
a private-set intersection protocol inspired by the solution in [9].
Such a protocol allows one entity (the client device) to know which
elements of the set in its possession match the ones possessed by
the remote entity (the server device) without revealing anything
else to both entities. Note that the straightforward application of
the primitive proposed in [9] to our scenario and problem (prox-
imity between aerial vehicles) would not be a satisfactory solution.
Indeed, location data are continuous and affected by an error due
to the inaccuracy of the measurement technology (e.g., the GPS
technology), making our problem interesting and challenging at the
same time. The entire protocol integrating the space tessellation
logic with the private-set intersection algorithm is described in
Sec. 3.3. The UAVs could report an alarm to the pilot if proximity is
detected. Then, the remote pilot can reduce speed and adopt any
evasive maneuvers—as proximity detection is our objective, how
to achieve collision avoidance is out of scope. Finally, note that in
case of proximity, the location privacy of the neighbor UAV would
be broken: such an outcome is deemed acceptable since safety is
prioritized over privacy.

3.2 Rationale of the Space Tessellation
LPPD is rooted in a specific division of the Earth’s surface in multi-
ple dynamic three-dimensional spheres, whose logic is explained
below.

Let us consider the UAV𝑢𝛼 , located at pos𝛼 = (𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 ). Given
that 𝑢𝛼 is equipped with a GNSS receiver (e.g., GPS), its estimated
location will likely be affected by an error, depending on the specific
location and satellites’ visibility. We assume that 𝛿 is the maximum
error on the location of 𝑢𝛼 caused by GNSS inaccuracy. When
running LPPD, 𝑢𝛼 would like to ensure that the remote entity 𝑢𝛽
is not located closer than a threshold distance 𝑇𝛼 from its current
position. Naming 𝑑𝛼,𝑗 the distance between 𝑢𝛼 and 𝑢 𝑗 , they are not
at risk of immediate collision if Eq. 1 holds.

𝑑𝛼,𝑗 > 𝛿 +𝑇𝛼 . (1)

The model in Eq. 1 can be extended to consider other drone
movements, such as its acceleration/deceleration. However, we
do not explicitly address these extensions to keep our discussion
generally applicable.

Thus, it is possible to draw a sphere, centered at the location of
𝑢𝛼 , namely pos𝛼 , with radius 𝑟𝛼 = 𝛿+𝑇𝛼 . Then, Eq. 1 is satisfied only
if the location of 𝑢 𝑗 does not fall into such a sphere. Eq. 1 could be
further refined, considering the expected protocol execution time,
namely 𝑡𝑝 [s]. In particular, considering the maximum possible
speed of a UAV, namely 𝑉𝑀𝐴𝑋 [m/s], during protocol execution,
the remote entity might move for a maximum distance of𝑉𝑀𝐴𝑋 · 𝑡𝑝 .
Thus, Eq. 1 can be extended to obtain Eq. 2.

𝑑𝛼,𝑗 > 𝛿 +𝑇𝛼 +𝑉𝑀𝐴𝑋 · 𝑡𝑝 . (2)

Therefore, considering Eq. 2, 𝑟𝛼 = 𝛿 + 𝑇𝛼 + 𝑉𝑀𝐴𝑋 · 𝑡𝑝 . We de-
note 𝑟𝛼 as the guard radius, as it identifies the minimum allowed

3



displacement between 𝑢𝛼 and any generic remote entity 𝑢 𝑗 . Thus,
at each protocol run, 𝑢𝛼 maps its position as the center of a sphere
having radius 𝑟𝛼 . Then, 𝑢𝛼 needs to generate a (random) identifier
of its location to be used for proximity detection. To this aim, it
extracts three nonces s =

(
𝑠𝑥 , 𝑠𝑦, 𝑠𝑧

)
, with 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧 ∈ 𝑍𝑛 and 𝑛

sufficiently large (𝑛 > 64 bits), and uses them to obtain a random
origin point of the spaceO𝛼 =

[
𝑂𝑥 ,𝑂𝑦,𝑂𝑧

]
(Eq. 3), and to translate

its location (Eq. 4). 
𝑂𝑥 = 𝑥𝛼 − 𝑠𝑥 · 𝑑𝛼,𝑗 ,
𝑂𝑦 = 𝑦𝛼 − 𝑠𝑦 · 𝑑𝛼,𝑗 ,
𝑂𝑧 = 𝑧𝛼 − 𝑠𝑧 · 𝑑𝛼,𝑗 .

(3)


𝑥 ′𝛼 = 𝑥𝛼 −𝑂𝑥 ,

𝑦′𝛼 = 𝑥𝛼 −𝑂𝑦,

𝑧′𝛼 = 𝑧𝛼 −𝑂𝑧 .

(4)

The location identifiers ˜𝑥𝛼 , ˜𝑦𝛼 , ˜𝑧𝛼 are then obtained as per Eq. 5.
˜𝑥𝛼 =

⌊
𝑥 ′𝛼

2·𝑑𝛼,𝑗
⌋
,

˜𝑦𝛼 =
⌊

𝑦′𝛼
2·𝑑𝛼,𝑗

⌋
,

˜𝑧𝛼 =
⌊

𝑧′𝛼
2·𝑑𝛼,𝑗

⌋
.

(5)

We will denote 𝑝𝑜𝑠𝛼 = H (𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 ) the unique location iden-
tifier of 𝑢𝛼 for the current instance of the protocol, being H an
hashing function.

We remark that the nonces randomize the location of 𝑢𝛼 , which
otherwise would always be [0, 0, 0]. Thus, with the computations
in Eq. 3, Eq. 4, and Eq. 5, the actual location of 𝑢𝛼 is still at the
center of a sphere, but the specific identifier of the sphere is moved
according to the nonces 𝑠 . Finally, note that 𝑢𝛼 should deliver O𝛼 =(
𝑂𝑥 ,𝑂𝑦,𝑂𝑧

)
, to allow the remote entity to map its location in the

related location identifiers (only the points are delivered, while
nonces are kept secret). Then, the comparison among the identifiers
occurs in the encrypted domain, using a private-set intersection
scheme based on RSA (see below).

Note that, due to the specific shape of the WGS84 ellipsoid, some
locations (e.g., at the poles) might appear very different from circles.
Such imperfections are not an issue for our protocol, as they can
be approximated through the smallest circles where such shapes
can be inscribed.

3.3 Detecting proximity using LPPD
Assume a UAV 𝑢𝛼 is flying in a given area, and it becomes aware of
the presence of another UAV, namely 𝑢𝛽 , located in its reception
range. Such a discovery can be achieved in several ways, e.g., by
detecting the presence of the video stream of the UAV, the commu-
nication between the UAV and its controller, or periodical broadcast
messages emitted by the UAV. After detection, 𝑢𝛼 and 𝑢𝛽 establish
a secure connection, used to exchange public parameters, i.e., the
public keys (𝑛𝛼 , 𝑒𝛼 ),

(
𝑛𝛽 , 𝑒𝛽

)
and, if they do not trust each other,

the public key certificates 𝐶𝛼 and 𝐶𝛽 . Then, they run LPPD over
such a secure connection to verify they are not at risk of immediate
collision. To this aim, they execute the operations reported in Fig. 2,
as explained below.

UAV (uα)

p̃osα ←map(latα, lonα, altα, Ox, Oy, Oz, rα)
hα ← H(posα)
Rα ← Z∗

nβ

ψα ← hα ·R
eβ
α (mod nβ), ts =clock();

Kα ← (ψβ/Rα) (mod nβ)
tα ← H(Kα)

if(tα == tβ)
Proximity Detected!

Public Parameters {(nα, eα), (nβ , eβ), Cα, Cβ}

ψα, Ox, Oy, Oz, rα, ts

UAV (uβ)

p̃osβ ←map(latβ , lonβ , altβ , Ox, Oy, Oz, rα)
hβ ← H(posβ)

Kβ ← (h
dβ
β ) (mod nβ)

tβ ← H(Kβ)

ψβ ← y
dβ
α (mod nβ), ts =clock();

ψβ , tβ , ts

Figure 2: Sequence Diagram of LPPD.

Note that the UAVs do not compute each other’s trajectories but
only check if their locations fall within the same sphere, revealing
only the matching sphere (if any).

• To start LPPD, 𝑢𝛼 selects the space tessellation parameters,
as described in Sec. 3.2. Thus, it generates the origin point
O𝛼 , and the guard radius 𝑟𝛼 , used to identify its safe area and
to allow remote entities to map their position into its space
tessellation, respectively. Then, it maps its own location
pos𝛼 = (𝑙𝑎𝑡𝛼 , 𝑙𝑜𝑛𝛼 , 𝑎𝑙𝑡𝛼 ) to a bit-string value 𝑝𝑜𝑠𝛼 , i.e., the
spherical tile identifying its position.
Then,𝑢𝛼 executes the following: (i) computesℎ𝛼 = H(𝑝𝑜𝑠𝛼 ),
i.e., the hash of the tile identifier 𝑝𝑜𝑠𝛼 ; (ii) extracts a random
value 𝜌𝛼 ∈ Z∗𝑛𝛽

, where 𝑛𝛽 is the RSA modulus contained
in the public key of 𝑢𝛽 ; and, (iii) generates an encrypted
location identifier, namely,𝜓𝛼 , as per Eq. 6.

𝜓𝛼 = ℎ𝛼 · 𝜌𝑒𝛽𝛼 (mod 𝑛𝛽 ). (6)

Finally, 𝑢𝛼 delivers wirelessly the following elements:
– the encrypted location identifier𝜓𝛼 ;
– the one-time origin point of the space tessellation O𝛼 ;
– the guard radius 𝑟𝛼 ;
– the expiration time of the message, namely, 𝑡𝑠𝛼 .

• When 𝑢𝛽 receives the message from 𝑢𝛼 , it executes the fol-
lowing operations. First, 𝑢𝛽 maps its own location pos𝛽 =
(𝑙𝑎𝑡𝛽 , 𝑙𝑜𝑛𝛽 , 𝑎𝑙𝑡𝛽 ) into the mapping space instructed by 𝛼 ,
uniquely identified by the origin point O𝛼 and the guard
radius 𝑟𝛼 . The mapping results in a location identifier 𝑝𝑜𝑠𝛽 ,
i.e., the identifier of the current location of the UAV 𝑢𝛽 into
the tessellation space instructed by 𝑢𝛼 . Then, 𝑢𝛽 computes
ℎ𝛽 = H(𝑝𝑜𝑠𝛽 ), i.e., the hash of the location 𝑝𝑜𝑠𝛽 , and it
generates the parameter 𝐾𝛽 , as per Eq. 7.

𝐾𝛽 =
(
ℎ
𝑑𝛽

𝛽

)
(mod 𝑛𝛽 ). (7)

4



Third, 𝑢𝛽 computes the tag digest 𝑡𝛽 , as 𝑡𝛽 = H(𝐾𝛽 ), and it
generates the encrypted location identifier𝜓𝛽 as per Eq. 8.

𝜓𝛽 = 𝜓
𝑑𝛽
𝛼 (mod 𝑛𝛽 ), (8)

where 𝑑𝛽 is its private key. Finally, 𝑢𝛽 sends:
– the encrypted location identifier𝜓𝛽 ;
– the tag digest 𝑡𝛽 ;
– the expiration time of the message 𝑡𝑠𝛽 .

• At reception, 𝑢𝛼 executes the following. First, it executes the
modular division reported in Eq. 9.

𝐾𝛼 = (𝜓𝛽/𝜌𝛼 ) (mod 𝑛𝛽 ), (9)
Then, 𝑢𝛼 computes the tag digest 𝑡𝛼 = H(𝐾𝛼 ). Note that, in
case 𝑡𝛼 = 𝑡𝛽 , i.e., the UAVs 𝑢𝛼 and 𝑢𝛽 mapped their locations
into the same spherical tile, then ℎ𝛼 = ℎ𝛽 , and then, Eq. 10
holds (operations are (mod 𝑛𝛽 )).

𝐾𝛼 = (𝜓𝛽/𝜌𝛼 ) = (ℎ𝛼 · 𝜌𝑒𝛽𝛼 )𝑑𝛽 /𝜌𝛼 = ℎ
𝑑𝛽
𝛼 = 𝐾𝛽 (10)

Thus, when 𝐾𝛼 = 𝐾𝛽 , 𝑢𝛼 realizes to be in proximity of 𝑢𝛽 .
Otherwise, when 𝑡𝛼 ≠ 𝑡𝛽 , then 𝐾𝛼 ≠ 𝐾𝛽 , meaning that the
UAVs are not in proximity.

Therefore, at the end of LPPD, the initiator 𝑢𝛼 knows to be
in proximity of 𝑢𝛽 , and it needs to take action to avoid a colli-
sion. The initiator also has to inform the responder of the detected
proximity. Such activity can be done through a dedicated message
delivered over a regular Wi-Fi connection, secured via TLS. No
privacy measures apply here, as safety takes priority over location
privacy. The following actions may be heterogeneous. For instance,
𝑢𝛼 can contact 𝑢𝛽 , and they both can agree on a shared path, not
leading to physical collisions. Such an interaction will likely im-
ply an agreement over a set of explicit location identifiers. Indeed,
avoiding collisions when the entities are in proximity takes pri-
ority compared to possible (reduced) privacy leakage due to the
high chance of severe immediate threat to safety. Alternatively, 𝑢𝛼
can autonomously take an evasion maneuver, minimizing the risk
of collisions, without interacting further with 𝑢𝛽 . Without loss of
generality, the actions to be taken after discovering the co-location
depend on the specific nature and features of the UAV (e.g., level of
autonomy, presence, and type of controller).

4 SECURITY ANALYSIS
In this section, we discuss the security features offered by LPPD.
(Sec. 4.1) and provide the formal verification of such properties
through ProVerif (Sec. 4.2).

4.1 Security Services
Location Privacy. The most critical security service offered by
LPPD is its capability to guarantee the detection of proximity be-
tween twoUAVs inwireless visibility without revealing their respec-
tive locations. The cited property is achieved through a randomized
space tessellation and an algorithm for private-set intersection. Al-
though the cardinality of the possible location identifiers is limited
and possibly subject to brute-force attacks, we notice that brute-
forcing the entire space of the location identifiers is not possible.
Indeed, the encrypted location identifier delivered by𝑢𝛽 is uniquely
tied to its private key

(
𝑑𝛽 , 𝑛𝛽

)
, the encrypted location identifier

sent by 𝑢𝛼 and, in turn, to the nonces s selected by both the entities.
Provided that the nonces have sufficiently large entropy, the search
space for an adversary would be large enough to be considered
unfeasible. Moreover, even assuming to know the nonce used to
randomize location identifiers, an entity would need to have all
the possible encrypted location identifiers for one entity, which
is unfeasible for an interactive protocol and easily detectable by
the device subject to such an attack. Also, note that more than the
straightforward application of a private-set intersection protocol
would be required to provide location privacy in our context. Indeed,
without randomizing the space tessellation, an honest-but-curious
adversary would always know that the location of the entity initi-
ating the protocol (𝑢𝛼 ) is coincidental with the origin point of the
space tessellation. Instead, LPPD randomizes the origin point of
the space tessellation at each run with dedicated private nonces,
preventing any guessing by remote parties. Therefore, under stan-
dard security assumptions, the UAVs’ locations are not revealed
while still allowing for proximity detection. We formally prove this
property in Sec. 4.2 through ProVerif.

Protection against Active Attacks. An active attack might
try to interfere with the regular execution of LPPD by injecting
malicious messages. Such messages can be replayed after being
eavesdropped or forged ad-hoc to impersonate the legitimate par-
ties. First, we notice that LPPD runs after establishing a secure
connection. Thus, it relies on the previously-run secure session
establishment protocol to derive a session key known only to the
legitimate parties. The usage of such a key allows for authenticating
the parties, as well as detecting and rejecting impersonation attacks.
Moreover, fresh nonces and timestamps are generated ex-novo for
each new instance of the protocol. Thus, the validity period included
in the LPPD messages allows automatically rejecting messages re-
played after expiration. Overall, beyond protecting the location
privacy of the involved parties, the scope of such values is also to
guarantee immediate identification of replays to detect and reject
them. We formally prove this property in Sec. 4.2 through ProVerif.

Wireless Localization Attacks. An adversary might try to
localize the emitting source using wireless localization techniques.
A passive adversary can deploy an array of antennas over a large
area and analyze physical-layer features such as the Time of Arrival
(ToA) or the Received Signal Strength (RSS) of the LPPD messages
jointly to obtain a location estimate. Note that such solutions usually
require a significant number of packets to estimate the transmitter’s
location, and such a number drastically increases with the mobility
of the emitting source and the level of noise affecting the commu-
nication link. As shown through experiments in Sec. 5.3, LPPD
requires a minimal number of wireless messages (as little as 1 per
device in the most lightweight configuration), thwarting any effort
to localize the involved entities based on physical-layer features.
When more messages are needed, such as when higher security is
desired, several solutions for thwarting localization are available.
For instance, the UAs might randomly change the transmission
power of LPPD messages and use (pseudo)-random pseudonyms,
known only to the remote entities involved in the protocol, to make
it more difficult and expensive for a remote passive attacker to iden-
tify packets coming from the same source and apply localization
attacks.

5



4.2 Formal Verification
We verified the most important security objectives of LPPD, i.e.,
the secrecy of the location of the involved entities and the mu-
tual authentication among involved peers, through the automated
verification tool ProVerif [7], in line with many recent scientific
contributions on network security [17] [32]. Note that the security
of the atomic building blocks of LPPD has already been verified
formally in the past, e.g., by the authors in [9]. Thus, a rigorous
formal analysis of their security would not add anything new to
the current state of the art. Conversely, the composition of such
blocks into a new protocol might create novel vulnerabilities. Thus,
proving the security of LPPD is a must. In accordance with a vast
corpus of the literature, we choose to prove its security via symbolic
methods, selecting ProVerif as a tool.

The formal verification tool ProVerif assumes the Dolev-Yao
attacker model, i.e., it allows the attacker to read, modify, delete,
and forge packets and inject them into the public communication
channel. Under the cited assumptions, ProVerif can verify if the
designed protocol achieves the claimed security goals defined by
the user. Where an attack is found, ProVerif also describes the attack
steps. We verified the security of LPPD in ProVerif assuming two
communicating UAVs 𝑢𝛼 and 𝑢𝛽 , as discussed in Sec. 3. Specifically,
we tested three security features: (i) the secrecy of the location
identifiers of 𝑢𝛼 and 𝑢𝛽 during the protocol execution; (ii) the
resistance of the protocol to offline guessing attacks on the locations
𝑝𝑜𝑠𝛼 and 𝑝𝑜𝑠𝛽 , originated by the inherent low entropy of such
information; and, (iii) the authenticity of the messages of the UAVs.
Therefore, according to the logic of the ProVerif tool, we defined
four main events.

(1) acceptUAVa(x,y): Indicating that UAV 𝑢𝛽 believes it has ini-
tialized a protocol instance with UAV with ID 𝑦 = 𝑢𝛼 and
the supplied symmetric key 𝑥 .

(2) acceptUAVb(x,y): Denoting that UAV 𝑢𝛼 believes it has ini-
tialized a protocol instance with UAV with ID 𝑦 = 𝑢𝛽 and
the supplied symmetric key 𝑥 .

(3) termUAVa(x,y): Indicating that UAV with ID 𝑦 = 𝑢𝛽 believes
it has finalized the protocol with UAV 𝑢𝛼 and the supplied
symmetric key 𝑥 .

(4) termUAVb(x,y): Denoting that UAV with ID 𝑦 = 𝑢𝛼 believes
it has finalized the protocol with UAV 𝑢𝛽 and the supplied
symmetric key 𝑥 .

In line with the logic of ProVerif, we verified that message authen-
ticity holds through verifying security properties such as mutual
authentication and impersonation resistance. Recalling that the UAV
𝑢𝛼 shares its secret key with the UAV 𝑢𝛽 , it follows that, if the UAV
𝑢𝛼 completes the protocol, this latter one believes to have done
so with the UAV 𝑢𝛽 , and hence authentication of the UAV 𝑢𝛽 to
the UAV 𝑢𝛼 holds. Note that the UAV 𝑢𝛽 completes the protocol
successfully only when the UAV 𝑢𝛼 initiates it. Indeed, if UAV 𝑢𝛼
believes it has terminated the protocol with the UAV 𝑢𝛽 , this latter
one is the correct entity executing the protocol, and vice-versa.
Thus, the UAVs 𝑢𝛼 and 𝑢𝛽 are mutually authenticated. In addition,
we recall that, for the security properties we want to verify, ProVerif
provides the output not attacker(val[]) is true when the attacker
cannot derive the value of val. In contrast, it provides the output not
attacker(val[]) is false if the attacker can do so. Similarly, ProVerif

Verification summary:
Weak secret posA is true.
Weak secret posB is true.
Query inj-event(termUAVa(x, y)) =⇒
inj-event(acceptUAVb(x, y)) is true.
Query inj-event(termUAVb(x, y)) =⇒
inj-event(acceptUAVa(x, y)) is true.
Query not attacker(posA[]) is true.
Query not attacker(posB[]) is true.

Figure 3: Excerpt of the output provided by the ProVerif tool.

provides the output weak secret(val[]) is true when the attacker can-
not distinguish a correct guess of the value val from an incorrect
guess, while it provides the output weak secret(val[]) is false when
offline guessing attacks on val are possible.

Fig. 3 shows the excerpt of the output of the ProVerif tool when
executed on a local machine. The output of the tests shows that:
(i) the way 𝑝𝑜𝑠𝛼 and 𝑝𝑜𝑠𝛽 are used in LPPD protects them against
offline guessing attacks, originating from their low entropy; (ii) the
locations of the entities, i.e., 𝑝𝑜𝑠𝛼 and 𝑝𝑜𝑠𝛽 , are not exposed to the
attacker; and, (iii) message authenticity always holds. Note that we
also mitigated possible replay attacks by verifying the freshness of
the timestamp included in the messages.

Thus, LPPD can effectively protect the locations of the UAVs,
ensuring effective proximity detection properties and enabling col-
lision avoidance. We also released the source code of the implemen-
tation of LPPD in ProVerif as open-source [31], to allow interested
readers to verify our claims and further re-use our code.

5 PERFORMANCE EVALUATION
In this section, we first evaluate the effectiveness of LPPD (Sec. 5.1),
then we provide its implementation details (Sec. 5.2), and finally,
we report the results of real experiments (Sec. 5.3).

5.1 Simulation Analysis
The most critical objective of LPPD is to detect proximity among
UAVs. This task is achieved thanks to the space tessellation logic
introduced in Sec. 3.2. To test the effectiveness of LPPD in detect-
ing all the possible co-locations, we set up a simulation analysis
using Matlab R2021a. Specifically, we took a worst-case condition
by configuring 50 UAVs to move randomly in a geographical area
of 50 × 50 × 120 𝑚3, at a random speed modulus in the interval
[0 − 20.88] meters per second (coincidental with 50 km/h). In line
with the GPS accuracy in open space, we assumed that the UAV loca-
tions are affected by a random error, uniformly extracted in the inter-
val [0 − 2] meters for the horizontal components and [0 − 3] meters
for the vertical component, to have 𝛿 = 0.375meters. As mentioned
in Sec. 2.1, when the drone is in a location where a more significant
error is expected, the value of 𝛿 can be fine-tuned to guarantee zero
false negatives, following a safety-first approach. We also defined
a common guard space of 5 meters for all the UAVs. Note that the
above-specified parameters are just exemplary, and LPPD can work
effectively with any of their values.

6



With such parameters, the guard radius amounts to 𝛿+𝑇 +𝑉𝑀𝐴𝑋 ·
𝑡𝑝 = 0.375 + 5 + 20.88 · 0.02 = 5.793 meters. In such a scenario, we
evaluated the capability of the space tessellation logic of LPPD to
identify approaching co-locations while not leading to the invasion
of the related guard radius. To this aim, we define the Proximity
Detection Ratio as the ratio between the number of detected co-
locations and the number of co-locations that actually happened
and led to an invasion of the guard radius (ground truth). Fig. 4
shows the proximity detection ratio as a function of the sphere’s
radius used for space tessellation. Each value in the figure is an av-
erage of 10, 000 seeds (we also report the 95% confidence intervals).
As intuition suggests, increasing the sphere radius increases the

Figure 4: Proximity Detection Ratio of LPPD, varying the
radius of the sphere 𝑟𝛼 used for space tessellation.

capability of LPPDto detect co-locations before such events lead
to the invasion of the guard radius. Values lower than the guard
radius lead to zero co-locations detected while increasing the value
of the guard radius over the safety guard enhances the performance.
However, values very close to Eq. 2, such as 𝑟𝛼 = 5.5 meters, report
imperfect proximity detection ratios (0.947), as they cannot handle
drone movements at the maximum possible speed. We can obtain
the value 1 for the proximity detection ratio only setting 𝑟𝛼 as per
Eq. 2 (or higher), guaranteeing total safety. Note that, with such a
choice of 𝑟𝛼 , some UAVs might be identified as co-located although
being quite far (very close to 𝑟𝛼 m)—we might consider this case
as a false positive. However, as the priority of LPPD is safety, it
always identifies potential co-location at the required resolution
(no false negatives), leaving the pilots to assess the warning. Finally,
protocol scalability in very dense deployments might be an issue.
We chose the area and number of drones described above for a fair
comparison with [30], which uses the same parameters. In very
dense deployments, drones will likely be too close to each other
and give up privacy to prioritize safety, i.e., not use LPPD.

5.2 Implementation Details
We implemented a prototype of LPPD on the 3DR-Solo hardware [5].
The 3DR-Solo drone includes a CPU i.MX6 Solo designed by Freescale
System, compatible with the de-facto standard Pixhawk autopilot.
It is powered by a single-core processor ARM Cortex A9, running

at 1.00 GHz, and it is equipped with 7, 948 MB of ROM and 512 MB
of RAM. Moreover, this drone features modules for Cryptographic
Acceleration and Assurance (CAAM) and True and Pseudo-Random
Number Generator (certified by NIST), which are useful for execut-
ing cryptography primitives efficiently. As the operating system,
the 3DR-Solo runs 3DR Poky Linux, based on the Linux project
Yocto [3]. We implemented LPPD in C, within the stock 3DR Poky
OS, version 1.5.1. In particular, we integrated LPPDwithin theMicro
Air Vehicle Link (MAVLink) 1.0 communication protocol [1], using
the lightweight Micro Air Vehicle Message Marshalling Library [4].
We recall that MAVLink is a lightweight UDP-based messaging
protocol adopted by several large and small unmanned vehicles, en-
abling communication between drones, their onboard components,
and ground control stations. We also recall that MAVLink allows
full customization of messages, from a minimum packet length of 8
bytes (for acknowledgements) up to a maximum of 263 bytes.

We report the structure and content of the MAVLink frame (cus-
tomized for LPPD) in Tab. 1. We used the standard format float32
for encoding GPS coordinates. Converting the GPS coordinate to
a float32 might generate small inaccuracies. On the one hand, in-
ternal calculations might use a more precise format, e.g., float64.
On the other hand, when this is not possible, such implementation
inaccuracy can be included in the value of 𝛿 , making our model still
valid and applicable for proximity discovery. To be compliant with
the MAVLink standard, we extended MAVLink with a dedicated
Message ID (0xCA). We used the RSA algorithm for encryption and
decryption operations on big (modular) integers by integrating the
functions provided by the popular OpenSSL library, ver. 1.0.0 [21].

For the experimental evaluation, we selected four reference RSA
key sizes, i.e., RSA 1024, RSA 2048, RSA 3072 and RSA 4096, providing
security levels equivalent to 80, 112, 128 and 140 symmetric key
bits, respectively [6], to provide an adequate level of security even
for critical scenarios. Moreover, we adopted SHA-1 as the hashing
function and cryptographic Pseudo Random Number Generator
(PRNG) (/dev/urandom) seeded with 2, 048 bits. Our implementation
on the 3DR-Solo requires 1, 545.324 KB of Flash Memory (with a
static linking of the libraries) and 90.179 KB of RAM. Finally, we
remark that our implementation leverages popular open-source
tools, such as the Poky OS, MAVLink, and OpenSSL, supported by
a large variety of commercial UAVs.

5.3 Performance Assessment
We performed many experiments using the implementation dis-
cussed in Sec. 5.2, aimed at measuring the cost of integrating and
running LPPD on a real UAV, in terms of processing time, band-
width, and energy consumption.

As a first important investigation, Fig. 5 reports the average du-
ration of the basic modular operations required by LPPD, when
executed on the 3DR-Solo drone, over different key sizes. The figure
also reports the 95% confidence interval, computed over 1, 000 tests.
Specifically, taking as a reference the modulus size 1024, we notice
that the modular multiplication operation can be completed on
average in only 0.02433 ms. The modular divisions are a little more
expensive, being executed in 1.177 ms, on average. Finally, modu-
lar exponentiations are completed in an average time of 16.82 ms,
being the most expensive ones. Consider that the key size of 1024

7



Table 1: MAVLink Frame and LPPD Payload Notation.

Field Type Size [B] Description
SOF uint8_t 1 MAVLink 1.0. Start of Frame,

set to 0xFE.
LEN uint8_t 1 Payload Length, in bytes.
SEQ uint8_t 1 Sequence number.
SID uint8_t 1 UAV System Id. number.
CID uint8_t 1 System Id. number of the

transmitting component.
MID uint8_t 1 Message Type Id. number,

set to 0XCA.
Payload *uint8_t 0-255 LPPD message.
CRC uint8_t[2] 2 Checksum.

LPPD Payload
KIX uint8_t 1 Key Index.
RAD uint8_t[2] 2 Sphere Radius 𝑟𝑖 , in

centimeters.
O float32[3] 12 WGS84 origin coordinates (4

bytes each), in degrees.
ENC *uint8_t 128-532 Encrypted data (size based

on RSA keys and hash).
TS uint32_t 4 Message Timestamp, in UTC

format.

Figure 5: Time to execute modular operations on the 3DR-
Solo, considering different RSA key lengths. Red bars report
95% confidence intervals.

bits provides an equivalent security level of 80 bits, recommended
by the US-based NIST for regular security operations. Thus, the
above-discussed results demonstrate that modular atomic opera-
tions required by LPPD can be executed almost in real-time on a
modern commercial UAV, not introducing large delays that would be
hardly manageable in the execution of our scheme.When necessary,
e.g., for very-sensitive operations, larger key sizes can also be used,
providing enhanced security at the cost of a noticeable increase in
the computational and bandwidth overhead of the scheme, due to
the increasing size of the cryptography elements to be exchanged
between the involved entities.

With specific reference to the proposed LPPD scheme, we first
measured the time needed to run a single instance of LPPD on the
3DR-Solo, by considering the previously-mentioned key sizes. We
report in Fig. 6 the average time required to execute LPPD over
1, 000 tests (with 95% confidence intervals). In the figure, we explic-
itly considered the separate contributions of the processing (packet
generation, cryptography operations) and radio operations. Note
that the average computation time reported in the graph below
includes also the time to acquire the GPS location, in a scenario
where the current almanac, initial position, Ephemeris and time
information of the GPS are all set. Considering the minimum re-

Figure 6: Time to execute LPPD on the 3DR-Solo, with differ-
ent key sizes.

quired security level of 80 bits, corresponding to an RSA key size
of 1, 024 bits, LPPD completes on the client in only ≈ 39.66 ms,
confirming to be a viable option for efficient proximity detection. In
line with the previous results, the execution of LPPD with increased
key size leads to increased completion times. As specified in Sec. 3.2,
the above-considered completion times should also be taken into
account by an UAV when establishing its guard radius. With the
modification in the previously-mentioned Eq. 2, the client UAV can
be sure that, even assuming the worst-case speed of the remote
entity, the approaching UAV cannot come closer than 𝛿 (meters)
from its actual location at the end of the execution of the protocol,
further boosting the effectiveness of LPPD in detecting proximity.
Clearly, with such a modification, LPPD could also lead to more
false positives, i.e., detection of proximity even when the distance
between the vehicles is less than 𝑟𝛼 but not less than 𝛿 . We believe
that the probability of false positives is acceptable in UAV-related
use cases, where preventing collisions and safeguarding safety has
the highest priority.

We also evaluated the bandwidth overhead incurred by the in-
tegration of LPPD. Specifically, Fig. 7 reports the total number of
MAVLink messages required by LPPD, based on the adopted key
size. Additional configuration details are provided in Tab. 2. With
the most lightweight configuration (key size of 1, 024 bits), LPPD re-
quires only 2 messages, i.e., 1 frame per UAV. Due to the increasing
size of the cryptography materials, more messages are needed with
higher security levels, leading to additional energy consumption
(see below).

8



Figure 7: Messages required by LPPD between two UAVs.

Table 2: Payload size and no. of messages required by LPPD,
with different RSA key sizes.

Key Size
(bits)

Message size
𝑢𝛼 [B]

Message size
𝑢𝛽 [B]

Total
Messages

1024 146 153 2
2048 274 281 4
3072 402 409 4
4096 530 537 6

To measure the energy consumption demanded by running a
single instance of LPPD, we identified the contributions to the
consumption exacted by computations and radio operations. To
obtain the energy consumption related to the CPU operations, we
used the telemetry data conveyed by the 3DR-Solo to the remote
controller through the MAVLink protocol. In detail, we measured
the difference in the electrical current drained by the drone between
two different states: (i) at rest; and, (ii) during the execution of LPPD.
As a result, we obtained an average difference of ≈ 20 mA in the
electric current drained by the drone, over 1, 000 runs.

To estimate the energy consumption of the radio operations,
we considered that the radio chip on-board of the 3DR-Solo drone
is a chip of the family AR9300, working with an input voltage of
3.3 V, consuming 296.970 mA in TX mode and 187.879 mA in RX
mode with the IEEE 802.11b protocol [16]. We also assumed that a
generic packet transmitted by our drone is modulated through the
standard Direct Sequence Spread Spectrum (DSSS) technique, using
the Differential Binary Phase-Shift Keying (DBPSK) modulation, a
transmission rate of 1.0Mbps on a 22MHz channel bandwidth, and
a short guard interval of 800 ns. Then, we combined the contribu-
tions of the processing and radio chip to obtain the overall energy
consumption of LPPD, through Eq. 11.

𝐸 [𝑚𝐽 ] = 𝑉 ·
∫ 𝑇

0
𝑖 (𝑡)𝑑𝑡, (11)

where 𝑉 is the input voltage (15.11 V for the UAV’s battery and
3.3 V for the radio chip) and 𝑖 (𝑡) the instantaneous drained current
(additional 20 mA required by LPPD on the UAV’s battery and
296.970 mA for the radio chip). Fig. 8 reports the average results

of our experiments, together with the 95% confidence interval,
computed over 1, 000 tests. We also summarize in Tab. 3 the time
and energy consumption reported in Fig. 6 and Fig. 8.

Figure 8: Energy for executing LPPD on the 3DR-Solo.

Table 3: Avg. time and energy (with 95% confidence intervals)
required to execute LPPD, with different RSA key size.

Key
size
(bits)

Radio
Time
(𝑚𝑠)

Comp.
Time (𝑚𝑠)

Radio
Energy
(𝑚𝐽 )

Comp.
Energy
(𝑚𝐽 )

1024 3.192 36.471 ±
0.045

3.128 11.022 ±
0.01

2048 6.040 258.481 ±
0.104

5.919 78.113 ±
0.03

3072 8.088 846.6 ±
0.171

7.926 255.843 ±
0.05

4096 10.936 1, 985.642 ±
0.297

10.717 600.061 ±
0.09

Considering the most lightweight configuration (modular size
of 1, 024 bits), LPPD consumes only ≈ 14.15 mJ per instance, con-
firming its little impact on the regular operations of a UAV. Indeed,
given that the overall capacity of the battery powering the 3DR-
Solo drone is 282, 860 J (5, 200 mAh), assuming to work with a key
size of 1, 024 bits, LPPD consumes on average only 5 · 10−6% of the
battery of the drone for each instance, further demonstrating its
limited overhead and thus emerging once more as a lightweight
and efficient solution for proximity detection. Moreover, in order to
save energy, the pilot of the drone can still decide to disable LPPD
in some situations, e.g., when the remaining energy falls below
a threshold or when flying in areas with a very rare presence of
drones, trading off energy with privacy.

6 RELATEDWORK AND COMPARISON
In the last years, several works investigated proximity detection
and collision avoidance on UAVs.

Typically, researchers provided solutions for the above-cited
issue in the context of a swarm of drones, moving together to

9



Table 4: Qualitative comparison of LPPD against state-of-the-art approaches for proximity discovery on UAVs.

Ref. No
ad-hoc
sensors

No
calibration

Support for
high-speed

UAVs

Support for
unknown

UAVs

No ad-hoc
ground

infrastructure

Location
Privacy Support

Support
for RPASs

DJI [10] ✓ ✓ ✓ ✓ ✓ − ✓
Wang et al. [36] − − − ✓ ✓ − −
Beard et al. [22] ✓ ✓ ✓ − ✓ − −
Shen et al. [27] ✓ ✓ ✓ − ✓ − −

Sabetghadam et al. [24] ✓ ✓ − − ✓ − −
Park et al. [15] − − − ✓ ✓ − −
Gageik et al. [19] − − − ✓ ✓ ✓ −

Watanabe et al. [37] − − − ✓ ✓ ✓ ✓
Hsu et al. [13] ✓ ✓ − ✓ − ✓ −
PPCA [30] ✓ ✓ ✓ ✓ ✓ ✓ −
PPTM [25] ✓ ✓ ✓ ✓ ✓ ✓ −
LPPD ✓ ✓ ✓ ✓ ✓ ✓ ✓

accomplish a mission. A few examples in this direction include the
works by the authors in [27], [24], [22], [36], and [15]. The first ones
to investigate on the issue were the authors in [22], who developed
collision avoidance algorithms for the team and individual drone
optimality, without taking into account privacy considerations.
Similar considerations apply to the work by the authors in [36],
adopting control-theory based strategies to timely detect and avoid
collisions of drones in swarms with obstacles. Similarly, the solution
proposed in [15],[27], and [24] addressed the problem of collision
detection and avoidance collaboratively, by letting the involved
entities share information about the travel path in the swarm, not
taking privacy considerations into account.

To address collision avoidance, many approaches such as [19]
and [37] use on-board complementary sensors to detect approach-
ing collision with any object. On the one hand, such approaches
do not consider the knowledge of UAVs locations, thus preserving
location privacy. On the other hand, they often require calibration
before deployment for each new mission, and they are ineffective
when the potential speed of the approaching vehicle is high.

Recently, the authors in [13] implemented a technique based on
reinforcement learning to detect and avoid collisions on UAVs. The
scheme leverages the interaction of the UAV with a ground IoT
control network and forces the UAV to run across the IoT devices
in a specific way. Thus, forcing the deployment of a collaborative
IoT control network, where an operator controls the scenario, the
solution is impractical in mission-critical scenarios.

It is also worth mentioning the solution recently introduced by
the commercial drone manufacturer DJI, allowing drones to broad-
cast via Wi-Fi information such as the location, altitude, speed,
direction, and identification number of the drone directly to smart-
phones, so as to detect collisions in advance [10]. Clearly, such a
solution is not privacy-preserving.

We also highlight that our solution integrates the approach by
the authors in [9]. This is not the only possible choice, as several
recent works improved some aspects of such approach, e.g., the one
in [8]. However, consider that our scenario is highly dynamic, and
the major source of energy consumption for UAVs is the activation
of the RF interface for transmitting and receiving messages. Thus,

we made such a choice so as to reduce the amount of over-the-air
messages required to detect proximity among UAVs.

Two solutions that might appear close to ours are the ones by
the authors in [25] and [30]. The proposal by [25], namely PPTM,
considers the problem of finding any collisions in the overall path
of two drones at runtime, thus focusing on a problem different from
ours. The authors in [30], instead, proposed PPCA, a scheme for
privacy-preserving collision avoidance, using a tessellation logic
based on capsules, where both the source and the destination lo-
cation of the moving entity are needed to compose the capsule.
We compare LPPD against both [30] and [25], assuming two refer-
ence scenarios. The first case is the one of RPASs, i.e., the scenario
assumed in this manuscript. Here, for all compared approaches,
we assume that the next location to be travelled by the drone is
known to allow us to create capsules, which is the geometrical
shape needed by both PPCA and PPTM to be applied. We first
consider the required number of modular exponentiations, mul-
tiplications, additions, and messages the devices involved in the
protocol(s) exchanged. As PPCA runs on elliptic curves, we con-
sider the equivalent number of operations required by such protocol
to achieve the same result but on modular groups rather than el-
liptic curves. We summarize the results of our analysis in Tab. 5.
For the RPAS scenario, LPPD is the protocol requiring the least

Table 5: Complexity of LPPD, PPCA and PPTM, assuming
the scenario of RPASs.

Solution Exps. Mults. Adds. Total Msgs.
PPCA [30] 5 5 0 3
PPTM [25] 3 0 0 3

LPPD 2 2 0 2

exponentiations and the least number of messages exchanged be-
tween the devices to be aware of the co-location. The second case
we consider is the case of fully autonomous vehicles. Such a sce-
nario is the one for which PPTM has been designed; thus, such a
protocol requires no assumptions. Instead, PPCA and LPPD have
been designed for proximity detection on a single location. Thus,

10



to adapt them to this case and compare them to PPTM, we need to
assume that all locations travelled during the flight are known in
advance. Assume that 𝑛 is the number of locations travelled by the
drone. The straightforward application of both PPCA and LPPD
to the considered problem requires 𝑛 times the overhead reported
in Tab. 5, as the protocol should be executed completely for each
couple of consecutive coordinates. Instead, the overhead required
by PPTM depends on the presence (or not) of collisions among the
drones and, overall, on the similarity among the two trajectories.
In the best case, i.e., when the trajectories are very different, PPTM
requires the same overhead reported in Tab. 5. In the worst case,
i.e., when the two trajectories are the same, PPTM requires approx.
𝑙𝑜𝑔2 (𝑛) times the overhead reported in Tab. 5, being still the most
convenient solution. Such a result is expected, as PPTM has been
designed specifically to address the problem of trajectory matching,
i.e., to verify the existence of any collisions among the trajectories.
Conversely, our proposal LPPD has been designed for the case of
co-location detection on the current location only, which is the
only one known by RPASs, being more convenient for this latter
case—exactly the problem considered in this manuscript. We also
provide some quantitative numbers about the performance of the
discussed protocols. As LPPD and the proposal in [30] use exactly
the same hardware (3DR-Solo) and software (3DR-Poky), with the
same software configuration, we can directly compare their per-
formance. To estimate the performance of PPTM [25], we consider
that, as reported in Tab. 5, PPTM requires three total messages
exchanged between the entities and three modular exponentiations
only, i.e., 2 exponentiations and 5 multiplications less than PPCA.
We summarize in Tab. 6 the time, energy, and bandwidth require-
ments of both LPPD and the proposals in [30] and [25] for the
case of RPASs. Assuming the reference case of the security level
of 80 bits, PPCA [30] requires 72.01 mJ of energy per protocol run,
while we estimate PPTM would require 61.824 mJ per run. LPPD,
instead, requires only 14.15mJ, i.e., ≈ 22.3 % of the time required by
PPTM, originating partly from reduced computations and mostly
from the limited bandwidth overhead. Instead, consider the case
of fully autonomous vehicles and thus, full trajectories of 𝑛 = 50
non-colliding coordinates (the best case of PPTM). We estimate
PPTM would require exactly the same overhead (61.824 mJ and
3 messages), while LPPD would require 𝑛 times the overhead re-
ported in Tab. 6, i.e., 1, 983.15 mJ and 100 messages, being largely
inefficient (more than 32 times the overhead of PPTM). We high-
light, once again, that this result is fully expected, as our proposal
has been conceived for the case of RPAS, while PPTM [25] has been
conceived for fully autonomous systems.

At the same time, both LPPD and PPCA [30] allow choosing any
collision avoidance strategy after the proximity warning is issued.

Table 6: Comparison between LPPD, [30] and [25] in the case
of RPAS, assuming a common security level of 80 bits.

Solution Time
[𝑚𝑠]

Energy
[𝑚𝐽 ]

Bandwidth
Overhead [𝐵]

No. of
Messages

PPCA [30] 97.310 72.009 3, 360 3
PPTM [25] 63.668 61.824 640 3

LPPD 39.663 14.15 299 2

A complete overview of all the approaches for proximity de-
tection and avoidance on UAVs can be found in [38], while Tab. 4
reports a qualitative comparison between LPPD and the techniques
described above, along significant system features.

We notice that privacy and security aspects for RPASs are hardly
considered. The proposed solutions often rely on a Trusted Third
Party (TTP) and assume that the UAVs are related to the same man-
ufacturer. Compared to the discussed schemes, LPPD considers a
scenario where the UAVs are previously unknown. Moreover, from
Tab. 4, LPPD emerges as the only solution suitable for RPASs and
capable of providing privacy-preserving proximity detection with-
out relying on dedicated sensors on-board, and neither requiring
the deployment of ad-hoc components at the ground. At the same
time, the effectiveness of LPPD is also guaranteed when remote
UAVs approach at high speed, where the reduced detection range
might limit techniques integrating sensor readings. The combina-
tion of all the above features makes LPPD a compelling, unique, and
novel solution for proximity detection on UAVs, enabling collision
avoidance.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed LPPD, the first solution for lightweight
privacy-preserving proximity discovery for remotely-piloted Un-
manned Aerial Vehicle. LPPD integrates a novel space tessellation
logic based on randomized spheres with a lightweight solution
for private-set intersection, allowing two communicating UAVs to
discover whether they are in proximity. We demonstrated LPPD
to be fully reliable, guaranteeing a proximity detection ratio of 1
while also being viable and lightweight: an essential requirement
for commercial UAVs, where optimal use of the energy budget is
at a premium. Indeed, our performance assessment on the 3DR
Solo drone demonstrated that, with the most lightweight but secure
configuration, two UAVs can complete LPPD in only 39.66 millisec-
onds, while consuming only 14.15 mJ of energy, i.e., the 5 · 10−6%
of the battery capacity. The security of LPPD has been formally
verified. Moreover, the security guarantees provided by LPPD can
also be strengthened by selecting different configuration parame-
ters while remaining efficient and viable for integration on modern
UAVs and near-real-time proximity detection. Future work includes
the extension of LPPD in a broadcast scenario.

ACKNOWLEDGMENTS
The authors thank the anonymous Reviewers for the constructive
comments on the paper. This publication was partially supported
by Technology Innovation Institute, Abu Dhabi, EAU and by NATO
MYP G5828 project “SeaSec: DronNets for Maritime Border and
Port Security”. This work has been partially supported also by
the INTERSECT project, Grant No. NWA.1162.18.301, funded by
the Netherlands Organisation for Scientific Research (NWO). The
findings reported herein are solely responsibility of the authors.

REFERENCES
[1] 2019. Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey. IEEE Access 7

(2019), 87658–87680.
[2] Coluccia A., et al. 2014. RSS-Based Localization via Bayesian Ranging and Iterative

Least Squares Positioning. IEEE Commun. Let. 18, 5 (2014), 873–876.
[3] 3D Robotics. 2020. Yocto Linux. https://tinyurl.com/y2axm74b. (Accessed:

2023-Sep-29).
11

https://tinyurl.com/y2axm74b


[4] 3DR Robotics. 2014. MAVlink Protocol Setup for Solo. https://github.com/
3drobotics/mavlink-solo. (Accessed: 2023-Sep-29).

[5] 3DR SoloWebsite. 2020. 3DR SoloWebsite. https://3dr.com/solo-drone. Accessed:
2023-Sep-29.

[6] E. Barker. 2020. NIST Special Publication 800-57 Part 1 – Revision 5 - Recommen-
dation for key management: Part 1. Technical Report.

[7] B. Blanchet. 2014. Automatic Verification of Security Protocols in the Symbolic
Model: The Verifier ProVerif. 54–87.

[8] Geoffroy Couteau. 2018. New Protocols for Secure Equality Test and Comparison.
In Proc. of Applied Cryptography and Network Security. Springer, 303–320.

[9] E. De Cristofaro and G. Tsudik. 2010. Practical Private Set Intersection Protocols
with Linear Complexity. In Financial Cryptography and Data Security. 143–159.

[10] DJI. 2019. DJI Demonstrates Direct Drone-To-Phone Remote Identification. https:
//tinyurl.com/y39pft7x. (Accessed: 2023-Sep-29).

[11] FAA. 2021. Remote Identification of Unmanned Aircraft. Available Online:
https://www.faa.gov/news/media/attachments/RemoteID_Final_Rule.pdf.

[12] J. Gelinas. 2019. Look, up in the sky! It’s my package. Amazon to start drone
delivery ‘within months’. https://tinyurl.com/yrnj9xtj

[13] Y. Hsu and R. Gau. 2020. Reinforcement Learning-based Collision Avoidance and
Optimal Trajectory Planning in UAV Communication Networks. IEEE Trans. on
Mobile Computing (2020), 1–1.

[14] Huang, S. et al. 2019. Collision avoidance of multi unmanned aerial vehicles: A
review. Annual Reviews in Control 48 (2019), 147–164.

[15] J. Park, et al. 2008. UAV collision avoidance based on geometric approach. In
SICE Annual Conf. 2122–2126.

[16] Keranidis, S. et al. 2014. Experimental Evaluation and Comparative Study on
Energy Efficiency of the Evolving IEEE 802.11 Standards. In Proc. of Int. Conf. on
Future Energy Systems. 109–119.

[17] Kobeissi, N. et al. 2019. Noise Explorer: Fully Automated Modeling and Verifica-
tion for Arbitrary Noise Protocols. In IEEE EuroS&P. 356–370.

[18] Ma, Y. et al. 2019. WiFi Sensing with Channel State Information: A Survey. ACM
Comput. Surv. 52, 3, Article 46 (June 2019), 36 pages.

[19] N. Gageik, et al. 2015. Obstacle Detection and Collision Avoidance for a UAV
With Complementary Low-Cost Sensors. IEEE Access 3 (2015), 599–609.

[20] Oligeri, G. and Sciancalepore, S. and Raponi, S. and Di Pietro, R. 2020. Bro-
kenStrokes: on the (in) security of wireless keyboards. In Proc. of ACM WiSec.
231–241.

[21] OpenSSL Found. 2021. OpenSSL - Cryptography and SSL/TLS Toolbox. https:
//www.openssl.org/. (Accessed: 2023-Sep-29).

[22] R. Beard, et al. 2003. Multiple UAV cooperative search under collision avoidance
and limited range communication constraints. In IEEE Int. Conf. on Decision and
Control, Vol. 1. 25–30.

[23] Fabio Ricciato, Savio Sciancalepore, Francesco Gringoli, Nicolò Facchi, and Gen-
naro Boggia. 2018. Position and Velocity Estimation of a Non-Cooperative Source
From Asynchronous Packet Arrival Time Measurements. IEEE Transactions on
Mobile Computing 17, 9 (2018), 2166–2179.

[24] Bahareh Sabetghadam, Rita Cunha, and António Pascoal. 2022. A Distributed
Algorithm for Real-Time Multi-Drone Collision-Free Trajectory Replanning.
Sensors 22, 5 (2022), 1855.

[25] Sciancalepore, S. and George, D. 2022. Privacy-Preserving Trajectory Matching
on Autonomous Unmanned Aerial Vehicles. In ACM ACSAC.

[26] Sharma, A., et al. 2020. Communication and networking technologies for UAVs:
A survey. Jour. of Netw. and Comput. Applic. 168 (2020), 102739.

[27] Shen, K. et al. 2022. Multidepot Drone Path Planning With Collision Avoidance.
IEEE IoT Journ. 9, 17 (2022), 16297–16307. https://doi.org/10.1109/JIOT.2022.
3151791

[28] Pietro Tedeschi, Fatima Ali Al Nuaimi, Ali Ismail Awad, and Enrico Natalizio.
2023. Privacy-Aware Remote Identification for Unmanned Aerial Vehicles: Cur-
rent Solutions, Potential Threats, and Future Directions. IEEE Transactions on
Industrial Informatics (2023), 1–12.

[29] Tedeschi, P. and Sciancalepore, S. and Di Pietro, R. 2021. ARID: Anonymous
Remote IDentification of Unmanned Aerial Vehicles. In ACM ACSAC.

[30] Tedeschi, P. and Sciancalepore, S. and Di Pietro, R. 2022. PPCA - Privacy-
Preserving Collision Avoidance for Autonomous Unmanned Aerial Vehicles.
IEEE Transactions on Dependable and Secure Computing (2022), 1–1.

[31] Tedeschi, P. and Sciancalepore, S. and Di Pietro, R. 2022. Source code of LPPD in
ProVerif. https://github.com/pietrotedeschi/lppd.

[32] Tedeschi, P. and Sciancalepore, S. and Eliyan, A. and Di Pietro, R. 2020. LiKe:
Lightweight Certificateless Key Agreement for Secure IoT Communications. IEEE
IoT Journ. 7, 1 (2020), 621–638.

[33] Unmanned Airspace. 2019. “526,000 commercial drones to be delivered in 2020”.
https://tinyurl.com/mr26xmsy. Accessed: 2023-Sep-29.

[34] M. Vanhoef and F. Piessens. 2017. Key reinstallation attacks: Forcing nonce reuse
in WPA2. In Proc. of ACM CCS. 1313–1328.

[35] Eva Wisse, Pietro Tedeschi, Savio Sciancalepore, and Roberto Di Pietro. 2023.
A2RID—Anonymous Direct Authentication and Remote Identification of Com-
mercial Drones. IEEE Internet of Things Journal 10, 12 (2023), 10587–10604.

[36] X. Wang, et al. 2007. Cooperative UAV Formation Flying With Obstacle/Collision
Avoidance. IEEE Transactions on Control Systems Technology 15, 4 (2007), 672–679.

[37] Y. Watanabe, et al. 2007. Vision-Based Obstacle Avoidance for UAVs. In AIAA
Guidance, Navigation and Control Conf. and Exh. 6829.

[38] Yasin, J., et al. 2020. Unmanned Aerial Vehicles (UAVs): Collision Avoidance
Systems and Approaches. IEEE Access 8 (2020), 105139–105155.

ANNEX: NOTATION TABLE

Table 7: Notation used throughout the paper.

Notation Description
𝑢𝑖 Generic UAV, with 𝑁 number of UAVs.
𝑛𝑖 , RSA modulus selected for the protocol.
𝑒𝑖 , 𝑑𝑖 Public and private portions of the key of 𝑢𝑖 .
𝑔 Group generator.
𝑝𝑖 , 𝑞𝑖 Large primes of 𝑢𝑖 , where 𝑞𝑖 = 𝑘 (𝑝𝑖 − 1).
posi GPS location of UAV 𝑢𝑖 .
(𝑙𝑎𝑡𝑖 , 𝑙𝑜𝑛𝑖 , 𝑎𝑙𝑡𝑖 ) GPS coordinates of UAV 𝑢𝑖 .
𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 Single location Identifiers of UAV 𝑢𝑖 .
𝑝𝑜𝑠𝑖 Plaintext location identifier of UAV 𝑢𝑖 .
𝑀𝑘 Manufacturer of𝑢𝑖 , releasing the public key cer-

tificate 𝐶𝑖 .
O𝑖 Origin selected by 𝑢𝑖 for the tessellation.
𝛿 Maximum GPS error on the location of 𝑢𝑖 .
𝑟𝑖 Sphere radius chosen by UAV 𝑢𝑖 .
𝑟𝛼 Sphere radius chosen by UAV 𝛼 .
ℎ𝑖 Position digest generated by UAV 𝑢𝑖 .
𝑡𝑖 Tag digest generated by UAV 𝑢𝑖 .
𝜓𝑖 Ciphertext generated by UAV 𝑢𝑖 .
𝐾𝑖 Parameter of LPPD generated by UAV 𝑢𝑖 .
𝜌𝑖 Random value generated in Z∗𝑛𝑖 from UAV 𝑢𝑖 .
𝐶𝑖 Public-key certificate of 𝑢𝑖 .
𝐵 Operation bandwidth of the UAV 𝑢𝑖 .
A Adversary.
H Hash function.
𝑡𝑠 Timestamp.
𝑇𝑖 Threshold distance selected by the UAV 𝑢𝑖 .
𝑑𝛼,𝑗 Distance from UAV 𝑖 and UAV 𝑗 .
s =

(
𝑠𝑥 , 𝑠𝑦, 𝑠𝑧

)
Random nonces used to generate a random ori-
gin point of the space tessellation.

𝑆 Symmetric encryption algorithm.
𝐸 Public-key encryption algorithm.
𝐷 Public-key decryption algorithm.

12

https://github.com/3drobotics/mavlink-solo
https://github.com/3drobotics/mavlink-solo
https://3dr.com/solo-drone
https://tinyurl.com/y39pft7x
https://tinyurl.com/y39pft7x
https://www.faa.gov/news/media/attachments/RemoteID_Final_Rule.pdf
https://tinyurl.com/yrnj9xtj
https://www.openssl.org/
https://www.openssl.org/
https://doi.org/10.1109/JIOT.2022.3151791
https://doi.org/10.1109/JIOT.2022.3151791
https://github.com/pietrotedeschi/lppd
https://tinyurl.com/mr26xmsy

	Abstract
	1 Introduction
	2 Scenario and Adversary Model
	2.1 Scenario
	2.2 Adversary and Threat Model

	3 The LPPD protocol
	3.1 Our Solution in a Nutshell
	3.2 Rationale of the Space Tessellation
	3.3 Detecting proximity using LPPD

	4 Security Analysis
	4.1 Security Services
	4.2 Formal Verification

	5 Performance Evaluation
	5.1 Simulation Analysis
	5.2 Implementation Details
	5.3 Performance Assessment

	6 Related Work and Comparison
	7 Conclusion and Future Work
	Acknowledgments
	References

