
1

Jamming Detection in Low-BER
Mobile Indoor Scenarios via Deep Learning

Savio Sciancalepore∗†, Fabrice Kusters∗, Nada Khaled Abdelhadi∗, Gabriele Oligeri‡

Abstract—The current state of the art on jamming detection
relies on link-layer metrics. A few examples are the bit-error
rate (BER), the packet delivery ratio, the throughput, and the
signal-to-noise ratio (SNR). As a result, these techniques can
only detect jamming ex-post, i.e., once the attack has already
taken down the communication link. These solutions are unfit
for mobile devices, e.g., drones, which might lose the connection
to the remote controller, being unable to predict the attack.
Our solution is rooted in the idea that a drone unknowingly
flying toward a jammed area is experiencing an increasing effect
of the jamming, e.g., in terms of BER and SNR. Therefore,
drones might use the abovementioned phenomenon to detect
jamming before the increase of the BER and the decrease of
the SNR completely disrupt the communication link. Such an
approach would allow drones and their pilots to make informed
decisions and maintain complete control of navigation, enhancing
security and safety. This paper proposes Bloodhound+, a solution
for jamming detection on mobile devices in low-BER regimes.
Our approach analyzes raw physical-layer information (I-Q
samples) acquired from the wireless channel. We assemble this
information into grayscale images and use sparse autoencoders
to detect image anomalies caused by jamming attacks. To test
our solution against a broad set of configurations, we acquired a
large dataset of indoor measurements using multiple hardware,
jamming strategies, and communication parameters. Our results
indicate that Bloodhound+ can detect indoor jamming up to
20 meters from the jamming source at the minimum available
relative jamming power, with a minimum accuracy of 99.7%.
Our solution is also robust to various sampling rates adopted by
the jammer and to the type of signal used for jamming.

Index Terms—Wireless Security; Artificial Intelligence for
Security; Drones Security; Mobile Security.

I. INTRODUCTION

Drones, a.k.a. Unmanned Aerial Vehicles (UAVs), represent
an evolution of the Internet of Things (IoT) paradigm. Since
we define the IoT as a network of physical objects (things) that
are embedded with sensors, software, and other technologies
to connect and exchange data with other devices and systems
over the Internet [1],[2], it is immediate to include drones
in the IoT domain. They are battery-powered devices, fea-
turing limited onboard storage space and integrating Central
Processing Units (CPUs) with heterogeneous computational
capabilities. Recent papers even coined the notion of Flying

This is a personal copy of the authors. Not for redistribution. The final
published version of the paper accepted in IEEE Internet of Things Jour-
nal is available through the IEEExplore Digital Library, with the DOI:
10.1109/JIOT.2023.3343611.
∗Eindhoven University of Technology, Eindhoven, Netherlands.
†Eindhoven Artificial Intelligence Systems Institute (EAISI). Email:
s.sciancalepore@tue.nl, {f.e.kusters, n.k.s.abdelhadi}@student.tue.nl
‡Division of Information and Computing Technology (ICT), College of
Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU),
Doha, Qatar. Email: goligeri@hbku.edu.qa

IoT to specifically identify drones as a specification of the IoT
paradigm [3], [4], [5], [6].

Today, drones are increasingly used both outdoors, e.g.,
for disaster management, search and rescue, and goods de-
livery [7], and indoors, e.g., for inventory management, intra-
logistics of items, inspection and surveillance [8], and lead-
ing companies such as IKEA and Amazon are actively ex-
perimenting products for warehouse management and home
surveillance [9], [10]. In this context, leading market analysis
companies estimate a current market value of up to 100.37
billion USD by 2029, with a compound annual growth rate of
25.5% in the next years [11].

As their role becomes more central, drones are increasingly
the main target of several cybersecurity attacks. In particular,
due to the reliance on wireless channels for communication,
video streaming, and telemetry, attackers can easily disrupt
drones’ operation through jamming attacks [12]. Jamming can
significantly disrupt wireless communications in a given area
by injecting high-power noise into the same channel used
by legitimate communication parties [13]. Depending on the
firmware onboard, the drone might return to the mission’s
starting point, land, or even crash, with potential hazards for
people in the area, especially for indoor applications [14].

At the time of writing, most of the available solutions for
jamming detection work by identifying the deterioration of
the Bit-Error-Rate (BER), the Packet Delivery Rate (PDR),
or the Signal to Noise Ratio (SNR) of the communication
link. Some of them also use the spectrogram of the signal in
the Physical (PHY) layer, looking for sudden anomalies (see
Section II for an overview). Such solutions work reliably and
effectively when applied to static deployments. However, they
can detect jamming mainly ex-post, i.e., once jamming has
already disrupted the regular operations of the communication
link. Applying such approaches to drones would trigger the
default actions listed above, possibly causing hazards to the
drone and surrounding people. In this context, mobile devices
such as drones typically experience an increasing effect of
jamming (increasingly high BER, low PDR, low SNR) while
approaching the jammed area. Drones might exploit the men-
tioned phenomena to deploy a solution to detect jamming in
a low-BER regime, i.e., before entering an area where the
high-power noise injected by the jammer completely disrupts
the communication link. Such a solution is especially critical
for indoor applications, where people and drones often work
together in limited space.

Contribution. In this paper, we propose BloodHound+, an
innovative solution for jamming detection in low-BER mobile
indoor scenarios leveraging state-of-the-art Deep Learning

2

(DL) techniques. BloodHound+ allows to carry out jamming
detection by converting raw PHY data, that is, I-Q samples,
into images while detecting anomalies in their shape by
resorting to autoencoders.

Although our approach can apply to any mobile device,
we specifically consider the case of drones operating indoors,
e.g., for warehouse inspections [15], inspired by the recent
deployment of real-world use cases, such as the one managed
by IKEA [9] and Amazon [10]. When applied to autonomous
or remotely piloted vehicles and drones, BloodHound+ can
detect the approach of a jammed area with very low BER
values, allowing the remote entity to detect jamming while
maintaining complete control of the communication link. To
verify the effectiveness of our proposed approach, we con-
ducted an extensive measurement campaign emulating UAVs
through Ettus Research X310 and LimeSDR radios, using
multiple hardware devices (multiple Ettus Research X310 and
LimeSDR radios), communication link configurations, and
jamming conditions. Using such measurements, we tested
the effectiveness of BloodHound+ and other competing ap-
proaches for detecting jamming in a low-BER regime. Our
results show that BloodHound+ can detect jamming in sce-
narios with a lower BER (≈ 1e− 6) compared to benchmark
solutions, e.g., with an accuracy of 0.997 when the adversary
jams at a distance of 10 m from the target with a Relative
Jamming Power (RJP) of 0.1. Our solution is also very robust
to: (i) the distance from the jammer, (ii) the training set size,
(iii) the number of acquired samples, (iv) the sampling ratios
at the jammer and the receiver, (v) the type of jamming signal
(tone, Gaussian, or deceptive), as well as (vi) the adoption
of different jamming hardware and radio types. We envision
that BloodHound+ can be used during regular operations of
the UAV by acquiring physical layer information from the
(already existing) UAV communications channel. In addition,
it can be activated when desired, so as not to cause significant
overhead on the UAV.

This contribution extends and completes our previous work
published in [16] by providing the following new content.

• We focus on an indoor scenario, providing a brand new
range of data considering additional hardware, modula-
tion techniques, and jamming strategies.

• We consider a stronger adversary model, assuming that
the adversary knows the sampling rate and modulation
techniques of the legitimate communication link. This
knowledge allows the adversary to optimize the parame-
ters of the jamming attack to boost its effectiveness and
avoid detection simultaneously.

• We design a new optimized methodology for jamming
detection based on a one-class classifier of black and
white images extracted from raw I-Q samples using
sparse autoencoders.

• We experimentally compare our new methodology with
those proposed in [16] and [17], showing remarkable
performances and improvements concerning the RJP at
the receiver, distance from the jammer, number of I-Q
samples per image, training set size, and invariance to
the hardware used for training.

• We provide additional results on a new dataset gathered
using new hardware, namely, the LimeSDR.

• We provide new results on the data collected using
various sampling rates at the jammer and receiver.

• We provide new results on using a new jamming strat-
egy, i.e., deceptive jamming using the same modulation
(Binary Phase-Shift Keying (BPSK)) and signal of the
legitimate communication link.

We acknowledge that BloodHound+ takes inspiration from
anomaly detection strategies applied in other research do-
mains, e.g., intrusion detection and computer vision [18].
However, to the best of our knowledge, none of the contri-
butions in the current literature provided a structured method-
ology to apply such strategies to detect jamming attacks
on the wireless RF spectrum. Also, as described in more
detail in Sect. II, none of the contributions focused on low-
BER regimes, investigating how to detect jamming while still
maintaining remote communication capabilities.

Roadmap. The rest of this paper is organized as follows.
Section III introduces preliminary notions; Section IV de-
scribes the scenario and adversarial model; Section V provides
the rationale and details of BloodHound+; Section VI dis-
cusses our extensive measurement campaign and performance
assessment of our solution, and finally Section VII draws the
conclusion and outlines future work.

II. RELATED WORK

Several scientific papers recently considered drones for
indoor applications, focusing on aspects such as localiza-
tion [37], navigation [38], [39], and visualization [40]. How-
ever, none of them investigates jamming attacks and anti-
jamming approaches for indoor scenarios, thus mainly refer-
ring to the literature on generic (outdoor) jamming detection.
In the scientific community, jamming detection is usually
achieved by applying various types of analysis on one or more
metrics extracted from the primary communication link.
Regarding the metrics, several parameters have been analyzed,
such as the Received Signal Strength (RSS) of the signals [19],
the PDR as in [20] and [28], the Carrier-to-Noise density
power ratio [21], retransmission attempts [26], and [29], the
packet re-transmission profile, as in [30], or modulation-
specific metrics, such as for Orthogonal Frequency Division
Multiplexing (OFDM) in [31]. Such metrics have been used
in several scenarios and communication technologies, e.g.,
Massive MIMO [22], Wireless Sensor Networks (WSN) [23],
GPS [27], IEEE 802.11 [28], and spread spectrum-based
communication technologies [24], [25].
At the same time, due to the increasing popularity of Artificial
Intelligence (AI), ML and DL approaches have been recently
used extensively for detecting ongoing jamming. Such tools
include Convolutional Neural Networks (NNs)s (CNNs) such
as in [32] and [33], genetic algorithm-based Cumulative Sum
(CUSUM) methods such as in [34], Bayesian networks such
as in [35] and, finally, autoencoders such as in [36]. All
such approaches utilize as the main source of information
the PHY layer of the communication stack due to its direct

3

TABLE I: Qualitative comparison of BloodHound+ with related literature on jamming detection. The symbol denotes that a
specific feature is supported, the symbol G# denotes that the specific feature is partially supported, while the symbol # denotes
that the feature is not supported.

Ref. Jamming Detection
Metric

Jamming Detection
Technique

Robustness to
Jamming Distance

Robustness to
Jamming Signal Type

Jamming Detection
in Low-BER Regime

[19] RSS Geometric and
Arithmetic Mean

ratio

#

[20] PDR Query-based
procedure

#

[21] Carrier-to-Noise density
power ratio

Sum-of-Squares
Paradigm

#

[22] Coherence blocks Generalized
Likelihood Ratio Test

#

[23] RSS Predetermined
knowledge, Error
Correcting Codes,
and Limited node

Wiring

#

[24], [25] PDR Code Tree # # #
[26] Re-transmissions Statistics-based # # #
[27]

Automatic Gain Control
(AGC)

Static tests # #

[28] PDR Random forests # # #
[29] PDR Channel probing # # #
[30] Retransmisions Message Invalidation

Ratio
#

[31] OFDM parameters
Machine Learning

(ML)

#

[32] Power spectral density,
spectrogram, raw constellation

ML # #

[33] Spectrogram ML #
[34] Nonlinear alternating current CUSUM # #
[35] PHY, Radio Link Control and

Packet Data Convergence
Control parameters

LSTM # #

[36] I-Q Autoencoders # #
[17] I-Q CNN # G#
[16] I-Q CNN # G#

BloodHound+ I-Q Sparse Autoencoders

relationship with the wireless channel, where jamming occurs.
However, although some of the contributions cited analyzed
the performance of the proposed jamming detection technique
with low SNR, none of them considered the BER of the
communication link. As a result, the proposed approaches
mostly confirm that the root cause of the drop in BER is
jamming. However, they cannot detect such attacks even when
the jamming effect is so low as not to significantly affect
the BER of the communication link. As explained above,
such consideration is particularly relevant in mobile scenarios
for remotely controlled equipment, not to lose control of
the mobile entity completely before detecting jamming. In
this context, the only contribution to the literature achiev-
ing such a property is our previous proposal in [16]. As
shown in Section VI, the methodology shown in this paper
significantly outperforms both the solution proposed in [16]
and the improvements of such a methodology, as the one
proposed in [17]. We summarize our comparison with the
current literature in Tab. I.

III. PRELIMINARIES

In this section, we introduce preliminary notions that are
useful to the readers of this manuscript, i.e., digital modulation
techniques (Section III-A) and autoencoders (Section III-B).

A. Digital Modulation

Digital modulation schemes adopted in wireless commu-
nication systems preprocess baseband signals to make them
suitable for transmission at high frequencies [41]. Typically,
modulation techniques divide the bit-stream to be transmitted
into two orthogonal components, namely the I vector and the
Q vector, linked in a complex value of type I+jQ, where the
I vector is the real component and the Q vector is the imagi-
nary component. Due to their orthogonality, such components
can be transmitted together on the wireless channel without
interfering. They can also be recovered and assembled at the
receiver to reconstruct the original bit-stream. In this context,
a typical way to represent complex I-Q signals is through the
I-Q plane, as shown in Fig. 1. In particular, the number of
expected I-Q values at the receiver (denoted as n) indicates
the number of bits that can be recovered through a single
complex I-Q value. In general, we can recover log2 n bits
from n symbols, and thus, with reference to Fig. 1 showing
the I-Q plane of a BPSK modulation, we can recover n = 2
bits, i.e., [i = −1, q = 0] (b=0) and [i = 1, q = 0] (b=1). We
also notice that the values of the I-Q samples at the receiver
always differ from those at the transmitter because of noise
introduced by the hardware components of the devices and the

4

Fig. 1: I-Q plane of a BPSK modulation. The receiver expects
two symbols, i.e., [i = −1, q = 0] and [i = 1, q = 0] (red
crosses). However, due to the wireless channel, the received
symbols are displaced (light grey area).

fluctuations of the wireless channel between the transmitter
and the receiver. To recover the original transmitted symbol,
the receiver associates the expected symbol with the received I-
Q sample whose distance from the received one is the shortest.
Thus, the higher the noise impact, the higher the chance that
a received I-Q sample is associated with the wrong expected
symbol, leading to an error and, therefore, a higher BER.
At the same time, with a given noise profile affecting the
communication channel, the higher the modulation order n, the
higher the amount of expected symbols and, thus, the higher
the BER. The rationale described above is adopted by lower-
order modulation schemes, e.g., communication links affected
by high noise levels, such as satellite transmissions and mobile
indoor applications. The intuition driving our work is that
the collective displacement of I-Q samples from the expected
one can be used to discriminate the presence of various
levels of intentional interference, i.e., jamming, affecting the
communication link. We will provide more details about our
approach in Section V.

B. Autoencoders

Without loss of generality, autoencoders are a special type
of Artificial NN (ANN) which can be trained to reconstruct
their input [42]. Formally, the problem autoencoders solve is
to find an encoder A : Rd → Rp and decoder B : Rp → Rd

satisfying Eq. 1.

argmin
A,B

E[∆(x, B ◦A(x))], (1)

where the symbol “◦” represents the composition operator,
i.e., B ◦ A(x) = B(A(x)), E represents the expectation of
the distribution of the input x, ’A(x)’ the encoded version of
the input, known as the bottleneck of the autoencoder when
p < d, and finally ∆ is the reconstruction loss function, which
measures the distance between the input of the ANN and the

Fig. 2: Reference Scenario. While operating indoors, a drone
tries to detect jamming (red color) in a low-BER regime,
i.e., before the jamming affects the quality of the legitimate
communication link (blue color).

reconstruction of the input [42]. For our purposes, in line with
many scientific contributions such as [42] and [43], ∆ is the
mean-squared-error (mse) function, as defined in Eq. 2 on two
reference distributions x and y.

mse(x,y) =
1

d
· ∥x− y∥22 for all x,y ∈ Rd, (2)

being d = M ·N .
Traditionally, autoencoders have been used mainly for im-

age generation, particularly for creating sets of images similar
to the input ones. However, in the cybersecurity research
domain, they are mainly used for anomaly detection. Let
c be an autoencoder trained on samples from a probability
distribution P . Next, let Q be a probability distribution such
that P ̸= Q. Then, we expect c to have a smaller reconstruction
error when tested on unseen samples from P than when tested
on unseen samples from Q. Therefore, the magnitude of the
reconstruction error of c in an unseen sample measures the
probability that such an unseen sample is not sampled from
P but from another distribution [43]. Consequently, we can
define a specific error value τ as a classification boundary.
All samples in which the auto-encoder c makes a higher error
than τ can be classified as ’not from P ’. In the literature, τ
is often referred to as a threshold [44], [45].

In this work, we use autoencoders to build a statistical
profile of the channel experienced between the mobile trans-
mitter and the receiver under regular operating conditions. We
provide more details in Section V.

IV. SYSTEM AND ADVERSARY MODEL

Fig. 2 shows the scenario and adversary model considered
in this work, inspired by the real-world use case discussed
in [9]. We consider an indoor scenario where drones operate to
achieve (semi)-automatized tasks, e.g., warehouse inspection
or home surveillance. The relevance of such a scenario is

5

confirmed by recent news, reporting that leading companies
such as IKEA and Amazon are already experimenting with
commercial products for this purpose [9], [10]. We consider
the existence of a communication link between the drone
and a Ground Control Station (GCS), which can be used
either to pilot the drone, in the case of a Remotely-Piloted
Aircraft System (RPAS), or to report telemetry data, in the
case of (semi) autonomous operations [46]. Independently of
the communication link usage, we do not make any assumption
on the nature of the drone operations, which can be either
instructed by a human pilot or (semi-) autonomous. Also, we
do not make assumptions on the presence of a positioning
technology, besides that it is not affected by spoofing [47].
Without loss of generality, we consider that the communica-
tion link between the drone and the GCS adopts the BPSK
modulation scheme. The mentioned assumption is reasonable,
as such a scheme allows one to mitigate the noise affecting
indoor communication channels as much as possible, being
also used in modern WiFi standards.

We also consider the deployment of a static jammer in
the area, which injects noise into the wireless channel used
for communication between the drone and the GCS. We
assume that such a jammer continuously emits interfering
signals with the highest possible transmission power, to affect
ongoing wireless communications in the deployment area
as much as possible. Unlike the contribution in [16], we
do not make any assumptions about the specific jamming
signal: it can be Additive White Gaussian Noise (AWGN),
a single tone, and even deceptive jamming, adopting the same
modulation scheme used by the legitimate communication
link. Also, being possibly unaware of the sampling rate of the
legitimate communication link, the jammer transmits signals
with the highest possible sampling ratio, limited only by the
hardware used to carry out the attack. Note that when the
attacker is unaware of the modulation used by the legitimate
communication link, they can perform modulation-agnostic
jamming, e.g. by injecting AWGN or a single tone centered
on the channel of interest. Instead, suppose that the attacker
is aware of the modulation used by the target link. In that
case, it can use deceptive jamming, i.e., injecting a signal
characterized by the same digital modulation (and possibly
the same message pattern) of legitimate messages, further
complicating the detection process.

Being bounded by the maximum achievable transmission
power, the jammer significantly impacts ongoing communica-
tions only in a specific area around its location. In fact, the RSS
associated with the jamming signal depends on the distance
between the jammer and the receiver location (drone), which
is highest in the proximity of the jammer and decreases with
further movement. The described wireless propagation effect
generates a jammed area, disrupting wireless communications.
In this context, the mobile receiver (drone), moving toward
the jammed area, wants to promptly detect the jamming
signal in a low-BER regime, i.e., before the effect of the
jamming on the quality of the communication link becomes
noticeable, causing a significant increase in the BER. In fact,
such a jamming detection mechanism would improve drone
situational awareness, as it would allow GCS to be aware

TABLE II: Notation and brief description.

Notation Description
n Number of I-Q samples per image.

M, N Dimensions of the input image.
am,n Generic pixel of the input image.
d Dimension of vectors within autoencoders, with

d = M ·N .
K Encoder units.
J Decoder units.
τ Autoencoder threshold value.

MSEtrain mse value obtained at training time.

of imminent jamming and take action immediately without
relying on a predefined set of steps (e.g., landing, returning to
the starting point).

V. METHODOLOGY

This section describes BloodHound+, i.e., the methodology
we propose to detect jamming in a low-BER regime. In
summary, BloodHound+transforms jamming detection into an
anomaly detection problem on images generated by encoding
the current state of the communication channel. Overall,
we can identify two main building blocks of our solution:
the Image Generation and the Jamming Detection, described
below. Tab. II summarizes the primary notation used below,
with a short description.

Image Generation. Fig. 3 provides a graphical overview of
the image generation process used in BloodHound+. The input
to the process is represented by a sequence of raw I-Q samples.
Such samples can be collected using a SDR or any hardware
capable of obtaining PHY wireless channel information (e.g.,
spectrum analyzers). The amount of samples used to generate
images, namely n, is one of the degrees of freedom of our
solution and can be configured by trading off the overall
accuracy with the computational requirements of the solution
(see Section VI for a detailed evaluation of the impact of this
parameter). We represent the sequence of I-Q samples through
the traditional I-Q plane, where we display the component
I on the x-axis and the component Q on the y-axis. In a
benign scenario (no jamming), such a representation generates
several clouds of I-Q values, approximately centred on the
value of the expected symbol, as explained in Section III-A.
Based on this representation, we build a bi-variate histogram.
Specifically, we divide the I-Q plane around the cloud of points
into tiles N×M , where the values of N and M depend on the
dimensions of the images we want to obtain. Then, for each
tile am,n, we evaluate the number of I-Q samples that fall into
the tile itself. When the number of I-Q samples falling on a tile
exceeds the value 255, we truncate it to the maximum value,
to ensure am,n ∈ [0, 255],∀(m,n). We consider the output
of such a process as a pixel value. As a consequence, the
output of the image generation process is a grayscale image
corresponding to the received profile of I-Q samples. Note
that, in principle, we might also work with colored images
(3-D matrices). In Section VI, we evaluate this configuration,
adopted in [17], and show its pros and cons in physical-layer
jamming detection.

Jamming Detection. The jamming detection process is
the building block of BloodHound+ dedicated to the timely

6

Raw IQ samples
BPSK modulation

In-phase component

510

255

Bi-variate histogram
computation

Q
ua

dr
at

ur
e

co
m

po
ne

nt

Raw (I-Q)
Data

Acquisition

Image GenerationCloud Extraction and
Trimming

In-phase component

Q
ua

dr
at

ur
e

co
m

po
ne

nt

Fig. 3: Graphical overview of the image generation process of BloodHound+. We acquire raw I-Q data through a generic
Software-Defined Radio (SDR), plot them through the traditional I-Q plane representation, compute a bi-variate histogram
based on the density of samples in given areas of the plane, and then obtain an image.

detection of possible jamming affecting the wireless com-
munication channel. It is a DL-based process using sparse
autoencoders, so it involves a training and testing process. We
highlight that our manuscript does not aim to provide a new
autoencoder architecture. Instead, as discussed in the related
work (Sect. II) and summarized in Tab. I, the innovation of our
manuscript is that BloodHound+ is the first solution applying
autoencoders to solve a jamming detection problem. Fig. 4
shows the architecture of the adopted autoencoder.

The input to the autoencoder is represented by the images
obtained as a result of applying the image generation pro-
cess to I-Q samples collected from the wireless channel. At
training time, we acquire I-Q samples corresponding to the
typical behavior of the communication link. We denote images
corresponding to such a scenario configuration as unjammed
images. We acquire n I-Q samples and generate images of size
M × N . In our deployment, n = 105 and M = N = 224,
to match the size of images used as input to various NN (we
compare our performance to two benchmark solutions using
CNN in Section VI). As encoder, we used logarithmic sigmoid
functions with K = 16 units (a.k.a. neurons). As a result, we
obtain a latent representation of the input image consisting of
K = 16 dimensions. Such a latent representation summarizes
the relevant features of the input image, significantly com-
pressing its dimension (compared to the input image). Then,
we submit the latent representation vectors to the decoder
using a linear decoder transfer function with a total number of
J = 50, 176 neurons. In our context, using the logistic sigmoid
activation function in the decoder’s units did not allow our
solution to converge to a good solution. We suspect vanishing
gradients to be the cause, further supported by the better
convergence we obtain when using linear activation functions
in our decoder layer. In principle, autoencoders allow the use
of multiple hidden layers. Overall, the higher the number of
hidden layers, the better the performance of the classifier at
run-time, but also the higher the computational overhead of
the methodology. Here, we use two hidden layers and the
sparsity regularization technique, in line with the architecture
of sparse nonlinear autoencoders. As we show in Section VI,
such a choice allows us to obtain remarkable classification
accuracy while achieving a computational cost lower than
that of more complex architectures. This process provides

a reconstructed image of the same dimension as the input.
We first convert the matrix of size m × n into a vector of
dimension d = M ·N , concatenating the rows of the image one
after the other. Then, we compute the mse loss function as in
Eq. 2 (see Section III-B). During training, we acquire several
images corresponding to the regular (expected) behavior of the
wireless channel, building a corresponding profile of such a
channel when displayed through images (i.e., our hypothesis).
We compute a threshold τ on such a profile, as explained in
Section III-B, to distinguish the regular channel conditions
from the unexpected one. At testing time, we compare the
mse value obtained from a run-time acquisition of the wireless
channel with the threshold τ previously cited. Suppose that
the mse of the input image is equal to or greater than the
threshold. In that case, the autoencoder produces a positive
prediction, meaning that a jammer affects the communication
channel. Otherwise, when mse is lower than the threshold,
the autoencoder outputs a negative prediction, meaning there
is no jamming. In line with the logic of any ML and DL
solution, the rationale of BloodHound+ aligns with statistical
hypothesis testing methods. In the following, we provide more
details on the autoencoder training process and the threshold
selection methodology.

Training the autoencoder. For training the autoencoder, we
use only unjammed images, i.e., images generated from I-Q
samples acquired when no jamming affects the communication
link. We do not use any jammed images, i.e., images obtained
from a jammed communication channel. We applied this
strategy mainly since jamming can be performed in many
different ways, typically unknown and unpredictable to the
legitimate parties. Instead, our intuition is that we can build a
profile of the expected conditions of the communication link,
even in very noisy scenarios, and detect jamming as a deviation
from such expected conditions. In this context, to guarantee
reliable operations for the autoencoder, it is crucial to gather
I-Q samples that cover the most extensive possible set of
expected conditions of the communication channel. In fact, the
reliability of the auto-encoder in identifying anomalies leading
to jamming depends on the variety of conditions affecting the
communication channel, thus reducing false positive events.

Threshold selection. Optimal selection of the decision
threshold of an autoencoder is an actively researched problem,

7

Encoder
(K units)

Latent
representation

(K units)

Decoder
(J units)

Input image
(M × N)

Reconstructed Image
(M × N)

MSE loss
function

Threshold
comparison

Positive
prediction
(jammed)

Negative
prediction

(unjammed)

MSE ≥
threshold

MSE <
threshold

Fig. 4: Autoencoder architecture. We use a logsig encoder transfer function and a purelin decoder transfer function, with a
total number of two hidden layers, a sparsity regularization term of 0.05, and the mse as a loss function, coming up with a
sparse nonlinear autoencoder.

which has yet to have a universally optimal solution [48], [45].
In this work, we adopt the approach suggested by the authors
in [44], i.e., we compute the threshold according to Eq. 3.

τ = mean(MSEtrain) + 3.5 · std(MSEtrain), (3)

being MSEtrain the set of mses that the autoencoder compute
on the training data, mean the statistical average and std the
standard deviation. As demonstrated by the authors in [44] and
confirmed by the authors in [45], such a choice is reasonable in
scenarios where no anomalous samples are used in the training
phase, as in our scenario. Furthermore, as acknowledged by the
authors in [45], this choice reduces false negatives compared
to the standard option, i.e., setting τ to the maximum mse
observed in the training samples. In turn, such a choice
increases the chances of detecting jamming in a low-BER
regime. Figure 5 reports an example of the threshold selection
process on actual data acquired with jammer jamming with
RJP = 0.6 at a distance of 10 meters from the receiver
(see Section VI-A for details). We notice that the distribution
of the mse values for unjammed images is characterized by
smaller values compared to the one of jammed images, with
only minimal overlap at the tails of the distributions. Setting
the threshold according to Eq. 3 allows one to reduce false
negatives without affecting performance.

Finally, note that deploying an autoencoder for image-
based jamming detection involves setting optimal values of
the hyperparameters of such a tool. We discuss the selection
of auto-encoder hyperparameters in Section VI.

VI. EXPERIMENTAL ASSESSMENT

In this section, we provide the details of our extensive ex-
perimental assessment, carried out to evaluate BloodHound+
in real indoor scenarios. We introduce the actual measurements
used for the following analysis in Section VI-A, while in
Section VI-B we describe the experimental settings. Then
Section VI-C reports the performance of our approach and
compares it with two solutions available in the literature.
We extend such results further, evaluating BloodHound+
with different hardware and various channel sampling rates

0 10 20 30 40 50
MSE

0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty

ch
os

en
 th

re
sh

ol
d

MSE benign scenario
MSE jamming attack
threshold

Fig. 5: Sample distribution of the mse of unjammed and
jammed images and optimal threshold selection. The reported
data refer to a jammer jamming with RJP = 0.6 at a distance
of 10 meters from the receiver.

(Section VI-D) and investigating the capability of identifying
deceptive jamming (Section VI-E).

A. Measurements

In this paper, we build on top of the data provided as part
of our contribution in [49] and extend such a dataset with
new measurements obtained with new hardware and different
configuration parameters.

All the measurements discussed below have been acquired
in an indoor office environment during a regular working
day, with people moving around and possibly across the
legitimate communication link. Such conditions match, as
much as possible, those described in Section IV.

The general setup of our measurements includes three enti-
ties, i.e., a transmitter, a receiver, and a jammer. In the first set
of experiments, we considered SDR Ettus Research X310 [50]

8

featuring a daughterboard UBX160 as reference hardware
for all the entities involved in our measurement campaign.
Here, we placed the transmitter and the jammer close to each
other while moving the receiver at various distances from the
transmitter (see below). For the second set of experiments,
we used different hardware, i.e., the LimeSDR [51]. It is a
low-cost, open-source, SDR platform supporting any wireless
communication standard. For these experiments, we placed the
transmitter and receiver 3 meters away from each other and
placed the jammer between them at a distance of 1.5 meters
from both entities. We connected the SDRs either via Ethernet
(Ettus X310) or USB 2.0 (LimeSDR) to two laptops, one
controlling the data transmission and jamming processes and
the other taking care of data reception. The received I-Q
samples were stored on the laptop connected to the receiving
SDR and subsequently uploaded to a centralized server for
data analysis. Specifically, we used the High-Performance
Computing (HPC) cluster available at TU/e, Eindhoven, The
Netherlands, providing a CPU E2124 with four cores running
at 3.3 GHz and 32 GB of RAM, as well as 2 GPUs Tesla
V1000 running at 32 with 256 GB of RAM.

Regarding software, for both setups, we used the GNURadio
v3.8 development toolkit [52]. We set the carrier frequency
fc = 900 MHz for both the legitimate communication link
and the jamming. We configured the transmitter and receiver
to exchange packets containing a repeating sequence of 256
bytes, encoded by a Constellation Modulation block using the
regular BPSK modulation scheme.

For the first setup using the SDR Ettus X310, we configured
a sample rate of 1M samples per second at the transmit-
ter, the receiver, and the jammer. We set the normalized
transmission power and receiver gain to the maximum value
of 1, corresponding to approximately 15 dBm (32 mW) of
transmission power. At the receiver, we set up the reception
chain of the BPSK modulation, including (i) an Adaptive Gain
Control (AGC) block, to mitigate the signal level fluctuations
introduced by the multipath fading; (ii) a Symbol Sync, which
performs timing synchronization; (iii) a Costas Loop, which
locks to the center frequency of the signal and down-converts
it to baseband; and, (iv) finally, a Constellation Decoder block,
which decodes the constellation points. We saved the I-Q data
obtained as the output of the Constellation Decoder block. We
did not use any channel estimation techniques to filter out any
channel effects beneficial for jamming detection. Regarding
the jammer, we chained two blocks: (i) a signal source, which
can be an analog sin wave (tone jammer) or a digital sequence
of Gaussian-distributed values (Gaussian jammer); and (ii) the
USRP Sink block, which sends the signal to the radio for actual
transmission. To emulate the scenario described in Section IV,
we placed the entities at different distances and, to further
mimic the movement, we changed the relative values of the
jammer transmission power between 0 and 0.8, i.e., between
0 and 7.94mW (9dBm), respectively. Values greater than 0.8
cause a complete disruption of the BER of the signal (see
Section VI-C), making our solution unnecessary. In fact, when
using a static setup, the reduction of the transmission power
of the jammer makes the received jamming power level at
the receiver weaker, allowing us to investigate the effect of a

jammer located further away from the communication link.
For the second setup using the LimeSDR, we considered

different sample rate values at the receiver and the jammer. In
particular, consider the formula ts = K × tS,R, where tS,R
is the reference sample rate of 1M samples per second, ts is
the actual sample rate used in the measurement, and K an
oversampling factor. We carried out experiments considering
different values of the oversampling ratio both at the receiver
and at the jammer, namely, the Receiver Oversampling Ratio
(ROR) and Jamming Oversampling Ratio (JOR). Specifically,
we varied both the ROR and the JOR in the range [1, 4].
For all such experiments, we tested two jamming strategies:
tone jamming, i.e., jamming with a sinusoid signal, and
deceptive jamming, i.e., jamming with precisely the same
bit-sequence BPSK-modulated signal delivered between the
legitimate transmitter and the receiver.

In general, the two measurement setups described above
allowed us to investigate the effectiveness of BloodHound+
while varying an extensive range of configuration parameters,
including: (i) the RJP at the receiver, (ii) the distance of
the jammer from the legitimate communication link, (iii) the
oversampling ratios at the receiver and the jammer, and (iv)
the types of jamming and the type of radios used for the
experiments.

B. Experimental Settings

For our experiments, we found the best configuration of
the hyperparameters of the autoencoder of BloodHound+ and
compared its performance with the approach based on the
binary CNN Resnet-18 used in [16] and the solution based
on 3-D images proposed in [17].

Autoencoder deployment. We fine-tuned the hyperparam-
eters of the autoencoder used in BloodHound+to find the
best trade-off between classification accuracy and the general
validity of the solution, i.e., to avoid overfitting. Specifically,
we used the Matlab-provided implementation of autoencoders,
version R2022b. As mentioned in Section V, we used the
Pure Linear (purelin) transfer function as the decoder trans-
fer function. We used a formal hyperparameter optimization
method performed on a subset of our dataset for all remaining
hyperparameters of the autoencoder. Specifically, we selected
1, 500 images from I-Q samples acquired in the scenario with
the most data available, i.e., with the receiver positioned 10
meters from the transmitter and the jammer emitting jamming
with a RJP of 0.5. We evaluated all combinations of the
following hyperparameters: (i) hidden size (i.e., the size of
the latent representation), with considered values being 8, 16,
32 and 64; (ii) sparsity regularization, with considered values
being 1, 0.5, and 0; (iii) L2-regularization term, with consid-
ered values being 0.01, 0.001, and 0.0001; and finally, (iv)
encoder transfer function, with considered values being logsig
and satlin. Finally, we set all remaining hyperparameters to
their default values provided by Matlab, specified at [53].
Such various configuration parameters led us to test a total
number of 72 configurations. For such tests, we used the
methodology described in the following, inspired by the k-
fold cross-validation technique used by the authors in [54].

9

• We divide all jammed images in the selected dataset into
10 disjoint subsets of equal size.

• We divide all unjammed images in the selected dataset
into evenly sized disjoint subsets of 10.

• For each combination of hyperparameters considered α,
for every i ∈ {1, . . . , 10}, we do the following:

– We train an autoencoder on all subsets of unjammed
images, except for the i-th one. During training, we
use the hyperparameters in α.

– We compute the mse values of the autoencoder on
the images in the i-th subset of unjammed images.

– We compute the mse values of the autoencoder on
the images in the i-th subset of jammed images.

– Using the mse values collected as part of the two
steps above, we compute the Area Under the Curve
(AUC) of the Receiver Operating Characteristic
(ROC) curve corresponding to the autoencoder.

• For each combination of hyperparameters α, we take the
average of the AUC-values found in the iterations of the
last cited step.

• Finally, we pick the combination of hyperparameters for
which the last step mentioned above yielded the largest
result.

Note that, like the authors in [54], we selected the AUC as the
optimization metric since it measures the quality of a classifier
independently of the threshold selection process. Following
such a hyperparameter selection process, we set the hidden
size value to 16, the sparsity regularization term to 0.5, the L2-
regularization term to 0.01 and the encoder transfer function
to the Logistic Sigmoid (logsig). We also selected the number
of epochs by examining how many iterations the autoencoder
takes to reliably converge in the worst case, i.e., when setting
the size of the latent representation to 64. We empirically
established that this would occur after 250 epochs, and thus,
we selected such a value to trade-off between classification
accuracy and training time. We use such a hyperparameter
configuration to train the autoencoder of BloodHound+ for all
the results discussed below on unseen data to avoid overfitting.

Benchmark Approaches. For all experiments, we compare
BloodHound+ with two benchmark solutions, i.e., the former
version of BloodHound+ published in [16] and the approach
proposed by the authors in [17]. We selected such solutions
as they work successfully on PHY data, i.e., I-Q samples,
significantly outperforming other solutions in challenging sce-
narios, such as the one considered in this manuscript. Both
approaches use the residual CNN Resnet-18, pre-trained on
the ImageNet dataset [55] and with the necessary modifications
to the output layer necessary to fit the nature of the jamming
detection problem. Specifically, we modified the output layer
of CNN to consider two possible classes as output, i.e., either
No-Jamming or Jamming. Regarding the input layer, CNN
works on images of size 224 × 224 constructed over I-Q
samples collected from the wireless channel, which is optimal
for comparison to BloodHound+. To train CNN, we used the
automated procedure trainNetwork provided by Matlab. We set
the batch size to 32, the number of epochs to 1, and the solver
to adam, similar to [16]. We set all remaining hyperparameters

Fig. 6: Sample grayscale and colour unjammed (left) and
jammed (right) images generated from the same set of I-Q
samples, used for the experimental assessment. We generated
the jammed images using samples collected at 10 meters from
the jammer, with RJP = 0.5.

to their default values, available at [56].
The solution provided in [16] works on grayscale images,

while the proposal in [17] uses color images characterized by
three layers rather than one. We follow the same procedure
described in [17] to set up such images. As an example,
Fig. 6 compares a grayscale and a color image generated
over the same set of I-Q samples collected from the wireless
channel. The lower images in Fig. 6 have been generated by
considering one layer for each primary colour component (red,
green, and blue). Therefore, assuming an image constituted by
a three-layer matrix, i.e., [224 × 224 × 3] (one layer for each
primary colour), and the pixel value between 0 and 255, in
line with [17], we assign each value of the tile through the
following rule.

• 0 ≤ xT ≤ 255, then pR = 0, pG = 0, pB = xT ,
• 256 ≤ xT ≤ 511, then pR = 0, pG = xT − 255, pB =

255,
• xT > 511, then , then pR = xT − 510, pG = 255, pB =

255,
where xT represents the value of the tile from the bi-variate
histogram, while pR, pG and pB are the pixel values, i.e., red,
green and blue, respectively. Finally, we observe that if xT >
767, it is clipped to 767—this issue can also be controlled
by properly adjusting the chunk size. Instead, for the upper
figures, in line with the logic in [16], we only consider one
layer and thus, 0 ≤ xT ≤ 255.

Measurements Characterization. As an introduction to the
presentation of our results, with reference to the setup using
the USRP X310 SDRs, in Fig. 7, we show the BER of the

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Relative Jamming Power

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
B

it
er

ro
r

ra
te

Sin
Gauss

Fig. 7: Analysis of the BER of the TX-RX communication
link using the SDRs USRP X310, with various levels of RJP
and two jamming signals, i.e., tone jamming and Gaussian
jamming. We placed the receiver 10 m away from the jammer.

TX-RX communication link experienced with different values
of the RJP, under different jamming signals.

We highlight that when RJP < 0.7, the impact of the jam-
mer on the communication link in terms of BER is minimal,
i.e., very few bits are corrupted. We achieved the lowest BER
value with RJP = 0.1, where BER ≈ 1e−6. On the contrary,
most bits are corrupted when RJP ≥ 0.7. Recall that in this
manuscript, we are specifically interested in detecting jamming
in a mobile scenario in a low-BER regime, i.e., before its
impact on the communication link becomes significant and
significantly affects the throughput of the communication link.
In this context, we are particularly interested in improving
the jamming detection performance when RJP < 0.7. For
higher values of RJP , other techniques based on the analysis
of BER can already detect jamming ex-post, i.e., once the
communication link is significantly affected.

Finally, in this context, note that we configured the
LimeSDR setup with an absolute transmission gain at the
jammer of 23 dBm. This configuration allows us to have a
BER of the legitimate communication link of approximately
0.001, which enables us to study the impact of different
configuration parameters of the scenario while matching the
conditions of the low-BER regime described above.

Performance Metrics. We compare the performance of
the methodologies introduced above mainly concerning their
accuracy, obtained as acc = TP+TN

TP+FP+FN+TN , being TP
the number of true positives (i.e., jammed images correctly
classified), TN the true negatives (i.e., unjammed images
correctly classified), FP the false positives (i.e., unjammed
images wrongly classified as jammed ones) and FN the
false negatives (i.e., jammed images wrongly classified as
unjammed ones). For some of the results shown below, we
show the True Positive Ratio (TPR) and True Negative Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RJP

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Bloodhound+
[17]
[16]

Fig. 8: Classification accuracy of BloodHound+, the proposal
in [17] and the solution in [16] with various levels of RJP.

(TNR), computed as TPR = TP
TP+FP and TNR = TN

TN+FN ,
respectively. We obtain our estimates of accuracy, TPR, and
TNR using the cross-validation approach used by the authors
of [54], using 10-fold cross-validation. For each result, we
report the mean and the 95% confidence intervals, computed
using the tool tinv provided by Matlab. Tab. III summarizes
all the experiments discussed below, together with the relevant
parameters.

C. Jamming Detection Robustness in Low-BER Regime

We first consider the impact of the received jamming power
at the receiver on the capability of BloodHound+ to detect
the presence of the jammer. We consider the setup using the
Ettus X310 SDR, and precisely, the measurements where we
placed the receiver 10 meters away from the jammer. Here, we
generate images using n = 105 I-Q samples and evaluate the
performance of BloodHound+, the proposal in [17] and the
solution in [16] to detect jamming, in terms of overall classi-
fication accuracy. We report the results of our investigation in
Fig. 8.

First, we note that the approaches in [17] and [16], based
on CNNs, reliably identify jamming only when RJP ≥ 0.4.
With lower values of the RJP, their performances do not follow
a unique trend, and the results also exhibit high variance (see
the red bars indicating the confidence intervals of the mea-
surements). On the contrary, BloodHound+ reports remarkable
performances for every value tested of RJP , with a minimum
accuracy of 0.997. We believe such a result is due to the
rationale of autoencoders used in BloodHound+, which work
only on unjammed images. This configuration allows auto-
encoders to build a profile of the regular behavior of the wire-
less channel to identify more minor differences (anomalies)
reliably. We also note that the performances of BloodHound+
do not depend on the speed of the involved entities nor the
smoothness of the change of channel conditions. Indeed, our
approach processes chunks of n I-Q samples and compares the

11

TABLE III: Experiments carried out in the manuscript and related parameters tested.

Techniques RJP Distances [m] Samples per
Image

Training Set
Size

Jamming
Radios

Jamming
Oversampling

Rates

Jamming
Signal Type

BloodHound+ 0.1 - 0.8 3, 5, 7, 10,
13, 16, 19, 21

10,000 50,000
100,000
500,000

1,000,000

2, 9, 18, 36,
54, 72

4, 5, 6, 7 1, 2, 3, 4 AWGN,
BPSK

[16] 0.1 - 0.8 3, 5, 7, 10,
13, 16, 19, 21

10,000 50,000
100,000
500,000

1,000,000

1, 2, 3, 4 AWGN,
BPSK

[17] 0.1 - 0.8 3, 5, 7, 10,
13, 16, 19, 21

10,000 50,000
100,000
500,000

1,000,000

images created from such samples with the expected channel
conditions acquired during training time.

We also investigated the impact of the receiver’s distance
from the jammer on the performance of the cited solutions. To
this end, using the same setup used for the previous tests, we
set RJP = 0.5 and move the receiver away from the jammer
to a distance of 21 meters. We stopped at such a distance
due to the physical limitations of the involved hardware, i.e.,
at distances higher than 21 meters, the BER of the legiti-
mate communication link increases significantly, preventing
us from performing the test reliably. We first acknowledge
that the receiver experiences increasing interference while
moving closer to the jammer. This phenomenon is shown
in Fig. 9, highlighting that the process is not linear but
follows a polynomial model while increasing distance, i.e.,
ax2 + bx + c. Note that our result is consistent with the
findings of Tedeschi et al. reported in [57]. We also notice

100 101

Distance (m)

10-3

10-2

10-1

100

N
om

al
iz

ed
 R

ec
ei

ve
d

S
ig

na
l S

tr
en

gt
h

Fig. 9: Normalized Received Signal Strength (NRSS) as a
function of the distance: the NRSS decreases when the receiver
moves far away from the transmitter. The solid red line shows
the model that best fits the experimental data (black circles).

that, for specific distance values, significantly different RSS
values may be experienced, due to the fast-fading process
affecting wireless communication channels. However, recall
that lower RSS does not necessarily imply higher BER. As

3 5 7 10 13 16 19 21
Distance (m)

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Bloodhound+
[17]
[16]

Fig. 10: Classification accuracy of BloodHound+, the proposal
in [17] and the solution in [16] when positioning the receiver
at various distances from the jammer.

our manuscript focuses on jamming detection in low-BER
scenarios, our analysis considers a condition where the BER
of the communication channel is low to provide jamming
detection before the loss of the communication link. We report
in Fig. 10 the results of our experiments involving jamming
detection via BloodHound+ and competing approaches.

Here, we notice that all tested solutions report remarkable
performance with minimal differences. All three approaches
reliably detect jamming at various distances, with an average
accuracy well above 0.99. Overall, the distance between the
receiver and the transmitters does not affect the classification
accuracy, which remains very high even when the receiver
is 21 meters away. We present such a result primarily to
show that, similarly to competing approaches, BloodHound+
can detect jamming even at a significant distance from the
jamming source. In addition to such a result, we present
additional results below that show the enhanced robustness
of BloodHound+ compared to other approaches.

Another critical parameter of BloodHound+ is the number
of samples used to generate images, namely n. The higher the
value of this parameter, the higher the number of samples to
use for image generation. Thus, the longer the receiver has

12

10000
50000

100000
500000

1000000

Number of samples per image

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Bloodhound+
[17]
[16]

Fig. 11: Classification accuracy of BloodHound+, the proposal
in [17] and the solution in [16] considering an increasing
number of samples N in the Image Generation process.

to acquire samples from the wireless channel, the higher the
processing overhead of the solution. For this analysis, in the
same setup as in the previous experiments, we considered the
data acquired with the receiver located 10 m away from the
jammer and RJP = 0.5, and tested the performance of the
three approaches while increasing the number of samples used
in the image generation phase, from 10, 000 to 1, 000, 000.
Fig. 11 reports the results of our analysis.

Note that the solutions in [17] and [16] report a higher
classification accuracy than BloodHound+ for a low number of
samples. For example, when the n = 10, 000, BloodHound+
reports an accuracy of 0.498 while such values amount to
0.99 and 0.95 for the solution in [17] and [16], respectively.
When the available number of samples increases, the accuracy
of the benchmark approaches is still high, but the variance
becomes larger (see the red bars). On the contrary, when n ≥
50, 000, not only the accuracy of BloodHound+ is very high
(always higher than 0.99), but the variance is also minimal
(less than 0.001 for all tests), indicating greater robustness
and reliability. Such results further motivate the deployment
of BloodHound+ and highlight its superiority compared to the
benchmark solutions.

To provide further insight into the performance of
BloodHound+, we investigated the impact of additional con-
figuration parameters. In particular, in the same setup as the
last cited test, considering n = 100, 000, we evaluated the
effect of the training set size. Figure 12 summarizes the results
of our investigation, distinguishing the achieved TPR and TNR
of our proposed solution.

To perform reliably, BloodHound+ requires a minimum
training set of only 9 images, reporting TPR and TNR
values of 0.962 and 0.99, respectively. Performance remains
almost constant when increasing the training set size. However,
increasing the training set could be particularly relevant in very
noisy scenarios characterized by a broader range of expected
wireless channel fluctuations. We recall that we need to train

2 9 18 36 54 72
Training set size

0

0.2

0.4

0.6

0.8

1

T
P

R
 /

T
N

R

TPR TNR

Fig. 12: TPR and TNR of BloodHound+ when varying the
training set size, i.e., the number of unjammed images used
for training the autoencoder.

BloodHound+ only once before deployment, and such results
do not affect the deployability of our solution at runtime.

We also investigated further any bias of our results concern-
ing the specific hardware used for the experiments. Taking
into account the same scenario as in previous experiments,
i.e., the receiver located 10 meters away from the jammer,
we evaluated the TPR and TNR of BloodHound+ when
changing the hardware used for jamming among the five
available radios. We highlight that this methodology prevents
the autoencoder from fingerprinting both the transmitter and
the receiver, these being the same for all measurement classes.
Moreover, we considered different hardware for the jammer
during our measurements, i.e., we mutually excluded the ones
adopted for training from the ones adopted for testing. The
mentioned strategy eventually guarantees that the autoencoder
learns the characteristics of the legitimate signal only while
being independent of the transmitter, the receiver, and the
jammer hardware (we do not use jammed signals for training).
Specifically, we consider all unjammed images obtained when
placing the receiver at a distance of 10 meters from the
transmitter, using the radio x as the jammer. Next, we consider
all the jammed images generated with the receiver located at
a distance of 10 meters and use radio y as a jammer. We
separated the unjammed and jammed images into 10 folds,
and we trained BloodHound+ on 9 of the folds containing
unjammed images, holding the i-th one to estimate the TNR.
Next, we estimate the TNR on the i-th fold of the unjammed
images and evaluate the TPR on the i-th fold of the jammed
images. Fig. 13 reports the result of our analysis. The tick
labels on the x-axis are of the form (x, y), as described above.

Note that the TPR and TNR remain almost unchanged
while varying the hardware used for jamming and the radio
considered for training. Therefore, we can safely assume that
BloodHound+ is not biased by the specific radios used in the
experiments. Still, it can extract the features of the wireless

13

(4
, 5

)
(4

, 6
)

(4
, 7

)
(5

, 4
)

(5
, 6

)
(5

, 7
)

(6
, 4

)
(6

, 5
)

(6
, 7

)
(7

, 4
)

(7
, 5

)
(7

, 6
)

(training radio, jamming radio)

0

0.2

0.4

0.6

0.8

1

T
P

R
 /

T
N

R

TPR TNR

Fig. 13: TPR and TNR of BloodHound+ when varying the
hardware used for jamming and the radio used for training.

channel useful for detecting jamming independently of the
particular hardware.

D. Impact of Different Hardware and Sampling Rate

We obtained all the results shown in the previous subsec-
tion using a single hardware brand (Ettus Research USRP
X310) and a single configuration of the sample rate, i.e.,
1 Msa/s. To further extend our experimental assessment, we
first analyzed the data collected through the second setup
described in Section VI-A, adopting the hardware LimeSDR
Mini. An important consideration about the scenario described
in Section IV is that the jammer might not know the adopted
sampling rate in advance. Thus, to disrupt ongoing communi-
cations as much as possible, in real-life scenarios, the jammer
might emit jamming using the maximum achievable sampling
ratio, likely higher than the one adopted by the legitimate
communication link. At the same time, the receiver might
oversample the signal, obtaining more helpful information
for jamming detection. This additional information might
be discarded for communication but might benefit jamming
detection. Therefore, in our tests, we trained BloodHound+
on unjammed images of the legitimate communication link
obtained under RJP = 0.5 and a distance of 3 meters.
Then, we tested using unjammed images (disjoint from those
used for training) and jammed images obtained from I-Q
samples generated with various levels of JOR. For this test,
we let the jammer emit random Gaussian noise. We also
compared the performance of BloodHound+ with the solution
in [16]. Fig. 14 summarizes the results of our analysis in
terms of TPR (for comparison purposes). Note that the TNR
of BloodHound+ was also excellent, at an average of 0.987
over all values of JOR.

We can distinguish two effects from the reported results.
Considering the configuration with ROR = 1 and JOR = 1,
we notice that the solution in [16] already reports very low
TPR (0.03). We highlight that this result is not related to
different oversampling rates but to the new hardware used for

1 2 3 4
JOR

0

0.2

0.4

0.6

0.8

1

T
P

R

Bloodhound+ ROR = 1
Bloodhound+ ROR = 2
Bloodhound+ ROR = 3
Bloodhound+ ROR = 4
[16] ROR = 1
[16] ROR = 2
[16] ROR = 3
[16] ROR = 4

Fig. 14: True Positive Ratio (TPR) of BloodHound+ and the
proposal in [16], with various ROR and JOR values, when the
jammer injects Gaussian noise (Gaussian random jamming).

the experiments. Indeed, the LimeSDR is a cheaper hardware,
which introduces additional inaccuracies and imperfections in
the I-Q samples received. Such inaccuracies affect the shape
of the I-Q samples, which is now more spread around the ex-
pected symbol than before, leading to jammed images different
from the ones in the training set of the solution in [16]. The
approach in [16] does not catch these variations, thus failing
to perform reliable jamming detection. On the contrary, in
such a configuration, the performance of BloodHound+ does
not change compared to the results shown in Section VI-C,
demonstrating once again the enhanced robustness offered
by the autoencoders used in BloodHound+ compared to the
CNNs used in the competing solution. With higher ROR and
JOR values, the performance of the approach in [16] remains
well below 0.2, confirming the unsuitability of such a solution
for detecting jammers in the wild. Instead, BloodHound+ can
mitigate and overcome the impact on the wireless channel of
different oversampling ratios, being able to detect jamming
also when the JOR is very high.

E. Deceptive Jamming

In previous experiments, we mainly considered two jam-
ming models, that is, tone jamming (using a sinusoid signal)
and random jamming (using AWGN). When the adversary
does not know the modulation used by the legitimate commu-
nication link, the jamming models mentioned and investigated
above are the most reasonable options to disrupt the chan-
nel as much as possible. However, more powerful attackers
might know in advance or become aware at runtime (e.g.,
by eavesdropping) of the modulation used by the legitimate
communication link. Based on this knowledge, they might use
the signal as part of a jamming attack optimized to disrupt
the communication link as much as possible. Recall that the
legitimate communication link in our experiments adopts the
BPSK modulation scheme. In such a scenario, the usage of
a jamming signal modulated also as a BPSK allows to boost

14

1 2 3 4
JOR

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Bloodhound+ ROR = 1
Bloodhound+ ROR = 2
Bloodhound+ ROR = 3
Bloodhound+ ROR = 4
[16] ROR = 1
[16] ROR = 2
[16] ROR = 3
[16] ROR = 4

Fig. 15: True Positive Ratio (TPR) of BloodHound+ and
the proposal in [16], with various ROR and JOR values,
when the jammer injects the same signal from the legitimate
communication link (deceptive jamming).

the effectiveness of the jamming activity, as acknowledged
by several scientific contributions both analytically [58] and
experimentally [28].

To this end, using the same setup as the previous exper-
iments in Section VI-D, we evaluated the ability of both
BloodHound+ and the solution in [16] to detect deceptive
jamming, i.e., a jammer injecting the same signal used as part
of the legitimate communication link. Fig. 15 summarizes the
results of our analysis in terms of TPR (for comparison pur-
poses). Note that also in this case, the TNR of BloodHound+
is 0.987, on average over all JOR, since we trained the
autoencoder in BloodHound+ with the same data as in Fig. 14.

Even when the adversary uses deceptive jamming,
BloodHound+ significantly outperforms the benchmark so-
lution in all tested configurations, showing perfect TPR and
being robust to adopting a high JOR by the adversary.

Overall, the results reported above demonstrate the superior-
ity of BloodHound+ compared to benchmark approaches and
the robustness of our solution to a wide range of configuration
parameters and scenarios, making it the preferred solution for
jamming detection in a low-BER regime.

F. Considerations on Interference

Various factors, such as interference and obstacles, might
affect the performance of BloodHound+. We show in Fig. 16
the effect on the I-Q samples of people passing through
our experimental setup. We notice that the shape of the I-Q
samples at the receiver is significantly affected compared to
a LOS scenario. Also, compared to jamming, note that these
phenomena are much quicker, and the shape of the I-Q samples
returns to the regular shape much faster than under jamming
attacks. Thus, to allow BloodHound+ not to declare jamming
in such cases, we need to experience such phenomena during

the training phase to make them part of the regular conditions
of the communication channel, especially indoors. These con-
siderations motivate the deployment of our solution and the
experiments in an office environment during working hours:
we experience several instances of such phenomena during
training, and they contribute to creating an expected profile of
unjammed scenarios which takes interferences into account.
During jamming attacks, the shape of the I-Q samples is
displaced from the expected profile for a much extended time,
contributing to enhancing the performance of our solution.

VII. CONCLUSION

In this paper, we have presented BloodHound+, an approach
that allows drones and possibly other mobile devices to detect
jamming at the physical layer (PHY) of the communication
stack. Our solution works on raw I-Q samples extracted from
the communication link, converts them into grayscale images,
and uses sparse autoencoders to detect discrepancies with the
expected profile of the channel. Therefore, BloodHound+ can
detect jamming in low-BER regimes, i.e., well before its effect
could cause a significant decrease in the quality of the main
communication link. At the same time, our solution allows
drones to efficiently avoid the jammed area and maintain
complete control and safety. To test the effectiveness of our
solution, we conducted an extensive measurement campaign,
acquiring real-world data with different hardware, jamming
strategies, and scenario configurations. We also tested the
performance of BloodHound+ depending on various param-
eters, such as SNR of the communication link, the distance
from the jammer and the transmitter, the size of the training
set, the number of samples acquired from the channel, the
jammer oversampling ratio, and the jamming strategies. Our
experimental assessment demonstrates, through an extensive
collection of results, the superiority of our solution compared
to the current state-of-the-art across all the analyzed con-
figuration parameters. In general, our solution contributes to
taking a step further toward the safe and secure integration
of drones into daily life. As part of our future work, we plan
to investigate further the effectiveness of BloodHound+ e.g.,
when applied for outdoor applications.

ACKNOWLEDGEMENTS

This work has been partially supported by the INTER-
SECT project, Grant No. NWA.1162.18.301, funded by the
Netherlands Organization for Scientific Research (NWO). Any
opinions, findings, conclusions, or recommendations expressed
in this work are those of the author(s) and do not necessarily
reflect the views of NWO. Moreover, this publication was
made possible by the NPRP12C-0814-190012-SP165 awards
from the Qatar National Research Fund (a member of Qatar
Foundation).

REFERENCES

[1] IBM, “What is the internet of things?”
https://www.ibm.com/topics/internet-of-things, (Accessed: 2023-
Dec-12).

[2] Oracle, “What is IoT?” https://www.oracle.com/internet-of-things/what-
is-iot/, (Accessed: 2023-Dec-12).

15

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
In-phase

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Q
ua

dr
at

ur
e

(a) t = 0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
In-phase

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Q
ua

dr
at

ur
e

(b) t = 1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
In-phase

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Q
ua

dr
at

ur
e

(c) t = 2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
In-phase

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Q
ua

dr
at

ur
e

(d) t = 3

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
In-phase

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Q
ua

dr
at

ur
e

(e) t = 4

Fig. 16: The effect of multipath on the transmitter-receiver link across five time windows. Compared to an ideal (static) scenario
(Figs. (a) and (e)), the shape of the I-Q samples at the receiver (modulated through the BPSK scheme) is significantly affected
(see Figs. (b), (c), and (d)) when an event is happening, e.g., moving objects.

[3] H. Genc, Y. Zu, T. Chin, M. Halpern, and V. Reddi, “Flying IoT: Toward
Low-Power Vision in the Sky,” IEEE Micro, vol. 37, no. 06, pp. 40–51,
Nov 2017.

[4] E. Wisse, P. Tedeschi, S. Sciancalepore, and R. Di Pietro, “A2RID-
Anonymous Direct Authentication and Remote Identification of Com-
mercial Drones,” IEEE Internet of Things Journal, 2023.

[5] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, H. Karimipour, G. Sri-
vastava, and M. Aledhari, “Enabling drones in the internet of things
with decentralized blockchain-based security,” IEEE Internet of Things
Journal, vol. 8, no. 8, pp. 6406–6415, 2020.

[6] M. A. Hoque, M. Hossain, S. Noor, S. R. Islam, and R. Hasan, “IoTaaS:
Drone-based Internet of Things as a service framework for smart cities,”
IEEE Internet of Things Journal, vol. 9, no. 14, pp. 12 425–12 439, 2021.

[7] L. Abualigah, A. Diabat, P. Sumari, and A. H. Gandomi, “Applications,
Deployments, and Integration of Internet of Drones (IoD): A Review,”
IEEE Sensors J., vol. 21, no. 22, pp. 25 532–25 546, 2021.

[8] L. Wawrla, O. Maghazei, and T. Netland, “Applications of Drones in
Warehouse Operations,” Whitepaper. ETH Zurich, D-MTEC, p. 212,
2019.

[9] The Verge, “Ikea adds stock-counting drones to more of its stores,”
https://www.theverge.com/2023/3/20/23648156/ikea-verity-drones-
stock-counting-stores, (Accessed: 2023-Dec-12).

[10] J. Schneider, “Amazon Wants You To Test its Ring Flying In-
door Drone Camera,” https://petapixel.com/2021/09/28/amazon-wants-
you-to-test-its-ring-flying-indoor-drone-camera/, (Accessed: 2023-Dec-
12).

[11] Global Indoor Robots Market – Industry Trends and
Forecast to 2029. (Accessed: 2023-Sep-13). [Online]. Avail-
able: https://www.databridgemarketresearch.com/reports/global-indoor-
robots-market

[12] T. Multerer, A. Ganis, U. Prechtel, E. Miralles, A. Meusling, J. Mietzner,
M. Vossiek, M. Loghi, and V. Ziegler, “Low-cost jamming system
against small drones using a 3D MIMO radar based tracking,” in
European radar conference (EURAD). IEEE, 2017, pp. 299–302.

[13] H. Pirayesh and H. Zeng, “Jamming Attacks and Anti-Jamming Strate-
gies in Wireless Networks: A Comprehensive Survey,” IEEE Communi-
cations Surveys & Tutorials, 2022.

[14] R. Ferreira, J. Gaspar, P. Sebastião, and N. Souto, “A Software Defined
Radio Based Anti-UAV Mobile System with Jamming and Spoofing
Capabilities,” Sensors, vol. 22, no. 4, p. 1487, 2022.

[15] S. Chambers, “A.P. Moller Holding invests in drone inventory
tracking solution,” https://splash247.com/a-p-moller-holding-invests-in-
drone-inventory-tracking-solution, (Accessed: 2023-Dec-12).

[16] S. Alhazbi, S. Sciancalepore, and G. Oligeri, “BloodHound: Early
Detection and Identification of Jamming at the PHY-layer,” in IEEE
Consumer Communications & Networking Conference (CCNC2023),
2023.

[17] S. Alhazbi, S. Sciancalepore, and G. Oligeri, “The Day-After-Tomorrow:
On the Performance of Radio Fingerprinting over Time,” in 2023 Annual
Computer Security Applications Conference (ACSAC), 2023.

[18] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and
A. v. d. Hengel, “Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly detection,” in

Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1705–1714.

[19] S. Saxena, A. Pandey, and S. Kumar, “RSS based multistage statistical
method for attack detection and localization in IoT networks,” Pervasive
and Mobile Computing, vol. 85, p. 101648, 2022.

[20] M. Çakıroğlu and A. T. Özcerit, “Jamming detection mechanisms for
wireless sensor networks,” in International ICST Conference on Scalable
Information Systems, 2010.

[21] D. Borio and C. Gioia, “Real-time jamming detection using the sum-
of-squares paradigm,” in International Conference on Localization and
GNSS (ICL-GNSS). IEEE, 2015, pp. 1–6.

[22] H. Akhlaghpasand, S. M. Razavizadeh, E. Björnson, and T. T. Do,
“Jamming detection in massive MIMO systems,” IEEE Wireless Com-
munications Letters, vol. 7, no. 2, pp. 242–245, 2017.

[23] M. Strasser, B. Danev, and S. Čapkun, “Detection of reactive jamming
in sensor networks,” ACM Transactions on Sensor Networks (TOSN),
vol. 7, no. 2, pp. 1–29, 2010.

[24] J. T. Chiang and Y.-C. Hu, “Cross-layer jamming detection and mitiga-
tion in wireless broadcast networks,” in Proc. of the 13th annual ACM
international conference on Mobile computing and networking, 2007,
pp. 346–349.

[25] J. T. Chiang and Y.-C. Hu, “Cross-Layer Jamming Detection and
Mitigation in Wireless Broadcast Networks,” IEEE/ACM Transactions
on Networking, vol. 19, no. 1, pp. 286–298, 2011.

[26] A. Marttinen, A. M. Wyglinski, and R. Jäntti, “Statistics-based jamming
detection algorithm for jamming attacks against tactical MANETs,” in
2014 IEEE Military Communications Conference. IEEE, 2014, pp.
501–506.

[27] E. Axell, F. M. Eklöf, P. Johansson, M. Alexandersson, and D. M. Akos,
“Jamming detection in GNSS receivers: Performance evaluation of field
trials,” NAVIGATION: Journal of the Institute of Navigation, vol. 62,
no. 1, pp. 73–82, 2015.

[28] O. Puñal, I. Aktaş, C.-J. Schnelke, G. Abidin, K. Wehrle, and J. Gross,
“Machine learning-based jamming detection for IEEE 802.11: Design
and experimental evaluation,” in Proceeding of IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
2014. IEEE, 2014, pp. 1–10.

[29] D. Liu, et al., “Efficient and Timely Jamming Detection in Wireless
Sensor Networks,” in IEEE Int. Conf. on Mob. Ad-Hoc and Sensor Systs.,
2012, pp. 335–343.

[30] Z. Lu, et al., “Modeling, Evaluation and Detection of Jamming Attacks
in Time-Critical Wireless Applications,” IEEE Trans. on Mob. Comput.,
vol. 13, no. 8, pp. 1746–1759, 2014.

[31] J. Pawlak, Y. Li, J. Price, M. Wright, K. Al Shamaileh, Q. Niyaz, and
V. Devabhaktuni, “A Machine Learning Approach for Detecting and
Classifying Jamming Attacks Against OFDM-Based UAVs,” in Pro-
ceedings of the 3rd ACM Workshop on Wireless Security and Machine
Learning, ser. WiseML ’21, 2021, p. 1–6.

[32] C Swinney, et al., “GNSS Jamming Classification via CNN, Transfer
Learning & the Novel Concatenation of Signal Representations,” in
IEEE Int. Conf. on Cyber Situat. Awaren., Data Analytics and Assessm.,
2021, pp. 1–9.

[33] Y. Li, J. Pawlak, J. Price, K. Al Shamaileh, Q. Niyaz, S. Paheding,
and V. Devabhaktuni, “Jamming Detection and Classification in OFDM-

16

Based UAVs via Feature- and Spectrogram-Tailored Machine Learning,”
IEEE Access, vol. 10, pp. 16 859–16 870, 2022.

[34] K.-D. Lu and Z.-G. Wu, “Genetic Algorithm-Based Cumulative Sum
Method for Jamming Attack Detection of Cyber-Physical Power Sys-
tems,” IEEE Transactions on Instrumentation and Measurement, vol. 71,
pp. 1–10, 2022.

[35] Y. Wang, S. Jere, S. Banerjee, L. Liu, S. Shetty, and S. Dayekh,
“Anonymous Jamming Detection in 5G with Bayesian Network Model
Based Inference Analysis,” in IEEE 23rd International Conference on
High Performance Switching and Routing (HPSR), 2022, pp. 151–156.

[36] H. Bouzabia, T. N. Do, and G. Kaddoum, “Deep Learning-Enabled
Deceptive Jammer Detection for Low Probability of Intercept Commu-
nications,” IEEE Systems Journal, pp. 1–12, 2022.

[37] A. Famili, A. Stavrou, H. Wang, and J.-M. J. Park, “PILOT: High-
Precision Indoor Localization for Autonomous Drones,” IEEE Transac-
tions on Vehicular Technology, pp. 1–15, 2022.

[38] G. Raja, S. Suresh, S. Anbalagan, A. Ganapathisubramaniyan, and
N. Kumar, “PFIN: An efficient particle filter-based indoor navigation
framework for UAVs,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 5, pp. 4984–4992, 2021.

[39] S. Jung, S. Hwang, H. Shin, and D. H. Shim, “Perception, Guidance, and
Navigation for Indoor Autonomous Drone Racing using Deep Learning,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2539–2544,
2018.

[40] X. Gao, L. Zhu, H. Cui, Z. Hu, H. Liu, and S. Shen, “Complete and
Accurate Indoor Scene Capturing and Reconstruction Using a Drone
and a Robot,” IEEE Sensors Journal, vol. 21, no. 10, pp. 11 858–11 869,
2020.

[41] T. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. USA: Prentice Hall PTR, 2001.

[42] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,”
arXiv preprint arXiv:2003.05991, 2021. [Online]. Available:
https://arxiv.org/pdf/2003.05991.pdf

[43] G. Oligeri, S. Sciancalepore, S. Raponi, and R. Di Pietro, “PAST-AI:
Physical-layer authentication of satellite transmitters via deep learning,”
IEEE Transactions on Information Forensics and Security, vol. 18, pp.
274–289, 2022.

[44] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-
dimensional and large-scale anomaly detection using a linear one-class
SVM with deep learning,” Pattern Recognition, vol. 58, pp. 121–134,
2016.

[45] S. S. Khan and B. Taati, “Detecting unseen falls from wearable devices
using channel-wise ensemble of autoencoders,” Expert Systems with
Applications, vol. 87, pp. 280–290, 2017.

[46] P. Tedeschi, S. Sciancalepore, and R. Di Pietro, “Lightweight Privacy-
Preserving Proximity Discovery for Remotely-Controlled Drones,” in
Proc. of Annual Computer Security Applications Conference, 2023, pp.
178–189.

[47] S. Raponi, S. Sciancalepore, G. Oligeri, and R. Di Pietro, “Road Traffic
Poisoning of Navigation Apps: Threats and Countermeasures,” IEEE
Security & Privacy, vol. 20, no. 3, pp. 71–79, 2021.

[48] H. Torabi, S. L. Mirtaheri, and S. Greco, “Practical autoencoder based
anomaly detection by using vector reconstruction error,” Cybersecurity,
vol. 6, no. 1, p. 1, 2023.

[49] S. Alhazbi, S. Sciancalepore, and G. Oligeri, “A Dataset of physical-
layer measurements in indoor wireless jamming scenarios,” Data in
Brief, vol. 46, p. 108773, 2023.

[50] Ettus Research, “USRP X310,” https://www.ettus.com/all-
products/x310-kit/, 2020, (Accessed: 2023-Dec-12).

[51] LimeSDR Microsystems, “LimeSDR,”
https://limemicro.com/products/boards/limesdr/, 2020, (Accessed:
2023-Dec-12).

[52] T. J. O’shea and N. West, “Radio Machine Learning Dataset Generation
with GNU Radio,” in Proceedings of the GNU Radio Conference, vol. 1,
no. 1, 2016.

[53] Matlab R2023a documentation, “TrainAutoencoder,”
https://www.mathworks.com/help/deeplearning/ref/trainautoencoder.html,
(Accessed: 2023-Dec-12).

[54] N. Shvetsova, B. Bakker, I. Fedulova, H. Schulz, and D. V. Dylov,
“Anomaly detection in medical imaging with deep perceptual autoen-
coders,” IEEE Access, vol. 9, pp. 118 571–118 583, 2021.

[55] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” Int. Jour. of Comp. Vision, vol. 115, no. 3, pp. 211–252,
2015.

[56] Matlab R2023a documentation, “TrainNetwork,”
https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html,
(Accessed: 2023-Dec-12).

[57] P. Tedeschi, S. Sciancalepore, and R. Di Pietro, “Modelling a Com-
munication Channel under Jamming: Experimental Model and Ap-
plications,” in IEEE Intl Conf on Parallel & Distributed Process-
ing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2021, pp. 1562–1573.

[58] S. Amuru and R. M. Buehrer, “Optimal Jamming Against Digital
Modulation,” IEEE Transactions on Information Forensics and Security,
vol. 10, no. 10, pp. 2212–2224, 2015.

