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Abstract—1Power Line Communications (PLC) is a well-
established technology that allows devices connected to the power
line to communicate with each other. While the majority of
research in this field is devoted to issues of availability, the
topic of Denial of Service (DoS) attacks has not been sufficiently
addressed. Typically, current solutions might detect a jammer
when situated near the target devices, yet the equipment under
jamming interference may face challenges in communicating an
alarm. However, when these systems are placed at a significant
distance from the jammer, the negligible impact of the jamming
renders its detection hardly detectable. In this work, we propose
a solution to identify the presence of a jammer in a PLC
infrastructure even when deployed at a significant distance. We
analyze the physical layer of the PLC link and adopt state-of-
the-art Deep Learning techniques to detect jamming even at a
distance where the jammer’s effect is negligible, thus allowing the
device to trigger an alarm. Considering a jammer featuring the
same transmission power as legitimate devices, we prove that we
can detect the presence of such a jammer with an overwhelming
probability (higher than 0.99) even at a distance of 75 m from
the source.

Index Terms—PLC Security; Physical-Layer Security; Artifi-
cial Intelligence for Security.

I. INTRODUCTION

Power Line Communications (PLC) enables data exchange

over existing power cables, thus leveraging an already

widespread infrastructure and making it an efficient solution

for applications such as Smart Grids (SGs) [1]. There are

two main types of PLC [2]: Broadband and Narrowband.

Broadband PLC operates at higher frequency ranges and

can achieve data rates of hundreds of Mbps, thus being

used for high-speed Internet access and multimedia streaming

applications. Conversely, narrowband PLC operates at lower

frequencies and are characterized by lower data rates, thus

being a better fit for applications such as smart metering and

SG management [3]. PLC technology is a building block for

the development of SG, a key component of future sustainable

energy systems. It also plays a crucial role in creating home

automation networks, allowing devices to communicate with

each other and the Internet through power lines. Being such a

widely deployed network, PLC eliminates the need to install

new wired networks for data transmission.

1Personal copy of the authors. Not for redistribution.

Although being a promising technology, PLC is affected

by several challenges, such as signal attenuation [4], noise

[5], and interference—the power line medium was originally

intended for power transmission [2], not for data commu-

nication. Nevertheless, significant advancements have been

made to improve its reliability and efficiency, making PLC

a promising solution for various communication needs [3].

Given their central role in critical infrastructures, enforcing

PLC security becomes paramount. A major challenge in PLC

comes from Denial of Service (DoS) attacks, i.e., a set of

(malicious) techniques to prevent data exchange between two

parties. Among the various DoS attacks, one of the most

effective is jamming, i.e., the injection of noise into the

communication medium in order to prevent the receiver from

discriminating and retrieving the legitimate signal. Jamming is

usually identified as a physical-layer attack since the jamming

signal may be unstructured—no modulation—thus involving

simple hardware architectures. On the contrary, jamming is

extremely successful, effectively preventing data exchange

between two parties. Such attacks are particularly detrimental

in several application scenarios characterized by sensing and

controlling. Typical examples involve a temperature sensor

that raises an alarm or a remote command from the control

center to open/close a valve in emergency situations. Detecting

jamming attacks is particularly important, although it involves

several challenges. Firstly, a smart adversary might inject a

non-modulated signal statistically similar to the noise already

present in the PLC link, making detection harder. Moreover,

when a powerful jamming signal is injected into the PLC

infrastructure, all communications are shut down, making

reporting the jamming detection event challenging. Standard

jamming detection techniques, e.g., the ones resorting to

communication metrics such as Signal-to-Noise Ratio (SNR),

Bit-Error Rate (BER), and packet-error rate become unreliable,

or even, unavailable in some specific scenarios. Indeed, when

a jammer is deployed, the previous metrics cannot distinguish

between a communication line failure and an attack.

Contribution. This work focuses on detecting jamming

signals in PLC systems at the physical layer of the PLC link.

We combine state-of-the-art Deep Learning (DL) techniques

with information extracted from the physical layer of the

power line. We propose an innovative technique to convert



physical layer information (I-Q samples) into images, and

subsequently use these images as input of a Convolutional

Neural Networks (CNN). We prove that this technique is

effective for jamming detection (accuracy higher than 0.99)

when other solutions based on higher layer metrics simply

fail (BER equal to zero).

Roadmap. The rest of this paper is organized as follows.

Sec. II surveys the most important works from the literature,

Sec. IV illustrates our scenario, system, and adversary model,

motivating the importance of jamming detection in PLC,

Sec. IV outlines the methodology to generate data and apply

our solution, Sec. V reports the results associated with our

analysis, Sec. VI discusses the impact and limitations of our

contribution, and finally, Sec. VII tightens the conclusions.

II. RELATED WORK

Cyber-physical or Operational Technology (OT) attacks re-

fer to attacks carried out on control operations of SGs. Such at-

tacks may disrupt the corresponding networks’ confidentiality,

integrity, and availability [6]. Attacks on the availability aim to

stop access to the service, e.g., via time delay, jamming, and

other forms of DoS [7]. Security services in PLC networks are

usually provided using cryptographic techniques implemented

at higher layers. Different methods have been designed to

protect the PLC at the physical layer, such

as [8], [9], [10]. Prasad et. al. [10] proposed physical layer

security for MIMO broadband PLC in-band full-duplex jam-

ming, showing that the eavesdropper’s decoding performance

is degraded and the secrecy rate is maximized. Shafie et. al. [9]

introduced artificial noise between legitimate communicating

devices. A low channel-to-noise signal (CNR) is sent from the

receiver to the sender and, in response, gets an amplified CNR

at each OFDM sub-channel.

In the context of jamming detection for SGs, Gai et.al.

[11] proposed a Maximum Attacking Strategy using Jamming

and Spoofing technique to interrupt operations of cognitive

radio networks in wireless SG networks. Kurt et. al. [12]

investigated two different attack models for SGs, and they

investigated the injection of Additive White Gaussian Noise

(AWGN) to the communication channel to compromise a

subset of meters. They employed CUSUM-based detectors

to detect such types of attacks. Shin et. al. [13] proposed

a counter-measure against reactive jamming attacks for low-

cost resource-constrained devices in SG, involving isolating

the compromised node. Neural networks are widely used for

applications such as image classification, speech recognition,

malware analysis, health care, and recommendation systems.

Various types of neural networks have been proposed; CNN

[14] is famous for classification tasks such as compiler op-

timization level recognition [15][16], weather classification

[17], jamming detection and identification [18]. However, to

the best of our knowledge, jamming detection in PLC networks

through DL techniques has not been investigated at the time

of this writing.

III. REFERENCE SCENARIO AND MOTIVATION

Fig. 1 depicts our reference scenario and adversary model,

characterized by three entities, namely, Alice (A), Bob (B),

and Eve (E). Our scenario considers a standard PLC network

constituted by a house where different devices, e.g., A and B,

communicate via the power line medium. This work focuses

on the challenges associated with availability: a malicious

entity (E) would like to stop communication between A and

B, thus deploying techniques to implement a Denial of Service

(DoS) attack.

DoS attacks in PLC can have a significant impact, given the

critical nature of many services that depend on such systems.

In the following, we summarize some potential objectives of

an adversary carrying out such attacks.

• Disruption of Energy Services. Energy distribution man-

agement is a critical component of SG systems; thus,

preventing the associated communications could disrupt

these services, leading to a power outage.

• Interruption of Communications. Power lines are not as

broadcast as the wireless medium; DoS attacks, while

having the same complexity, can be much more disruptive

in PLC networks. DoS attacks could potentially interrupt

PLC communications over a wide area, affecting different

industries and services, e.g. including Internet Service

Providers (ISPs) and public safety communications.

• Impact on Home Automation. Many home automation

systems use PLC technologies for inter-device communi-

cations. DoS attacks can potentially disrupt these systems,

causing inconvenience to homeowners and potentially

compromising safety systems.

• Financial consequences. Similar to other scenarios, in-

terruptions in PLC can lead to financial losses. Industries

relying on PLC for operations might face downtime, thus

losing productivity and revenues, and requiring additional

costs to harden the systems for future attacks.

• Safety Risks. PLC systems might be adopted for sup-

porting safety-critical tasks in critical infrastructures, e.g.,

traffic light coordination and hospital power systems. DoS

attacks in this scenario can lead to risks for people’s

safety.

In our scenario, E is performing a jamming attack, by inject-

ing a signal into the PLC network with the aim of disrupting

the communication between A and B. With reference to the

PLC wiretap channel model illustrated in Fig. 2, h
A−B

and

h
E−B

are the complex channel gains of the link A-B and the

link E-B, respectively, while n
B

is the corresponding additive

white Gaussian noise. Accordingly, the instantaneous signal-

to-noise-ratio (SNR) at B, can be expressed as in Eq. 1.

γ
A−B

=
P

T
H

A−B

P
J
H

E−B
+N

B

, (1)

where, P
T

is the transmit signal power, P
J

is the jamming

signal power, H
X−B

is the squared magnitude value of the

complex channel gain h
X−B

, X ∈ {A, E}, and N
B

is the

corresponding noise power.
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Fig. 1. An example of a broadband in-home PLC system, where A and B exchange PLC signals in the presence of a PLC jammer device (E).
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Fig. 2. Block diagram of the PLC wiretap channel model.

We consider the PLC channels to be Rayleigh fading channels,

in line with the corresponding literature [19], [20], [21], with

the associated probability density function (PDF) modeled

according to Eq. 2.

f
H

X−B

(x) =
1

H̄
X−B

(F
C
, d

X−B
)
exp

(

−x
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X−B

(F
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, d

X−B
)

)

,

(2)

where, H̄
X−B

(F
C
, d

X−B
) is the mean of H

X−B
, which mod-

els the average frequency-distance dependent PLC channel

attenuation, F
C

is the carrier frequency, and d
X−B

is the

distance associated with the X − B link. According to [21],

H̄
X−B

(F
C
, d

X−B
) can be expressed as in Eq. 3.

H̄
X−B

(F
C
, d

X−B
) = exp

(

− 2
[

a0 + a1 F
a2

C

]

d
X−B

)

. (3)

where, a0, a1, and a2 are PLC signal attenuation parameters

related to the PLC environment.

Table I summarizes the main notation used in this manuscript

and the values associated with the various parameters.

IV. METHODOLOGY

In this section, we describe the methodology adopted to

detect the presence of a jammer in a PLC system. The core

of our solution involves translating the received signals (I-

Q samples) into images, and then, exploiting state-of-the-art

solutions for image classification in order to detect which

TABLE I
NOTATION, DESCRIPTION, AND ANALYZED VALUES.

Parameter Notation Value

Transmit Power [dBµV] P
T

120
Noise Power [dBµV] P

N
70

Nbr. of SC per OFDM Symbol N
SC

512
FFT Nbr. N

FFT
512

Carrier Frequency [Hz] Fc 20e6
Sub-Carrier spacing [Hz] ∆f 15e3

Nbr. of OFDM Symbols per Frame N
Frm

Symb
20

Sampling Time [s] Tsamp 1/(2× Fc )
OFDM Symbol Duration [s] T

Symb
N

FFT
× Tsamp

Frame Duration [s] T
Frame

N
Frm

Symb
× T

Symb

Total Nbr. of Frames N
Frame

⌈T
Sim

/T
Frame

⌉

Total Nbr. of OFDM Symbols N
Symb

N
Frame

×N
Frm

Symb

Distance A-B [m] d
A−B

30
Distance E-B [m] d

E−B
30

Simulation time [s] TSim 2

images (and correspondingly, I-Q samples) are affected by

jamming.

Signal processing. Without loss of generality, in this work

we consider the reference modulation scheme BPSK, i.e.,

Binary Phase Shift Keying. Accordingly, bit values {0, 1} are

modulated by changing the phase of a reference frequency f0
(carrier), i.e., when b = 0, the phase φ becomes φ = 0, while

when b = 1, φ = π, where b represent the bit to be transmitted,

as depicted by Eq. 4.

x(t) = cos (2πf0t+ φ), (4)

where, x(t) is the PLC frequency signal to be transmitted.

BPSK modulation becomes straightforward when considering

the complex representation of Eq. 4. Indeed, when considering

the complex I-Q plane, BPSK modulation involves a null

imaginary component (Q = 0) and a real component I equals

to {−1, 1} as a function of the phase φ value, i.e., either 0

or π. According to this representation, each bit value can be

mapped in the I-Q plane as per Eq. 5.

b = 0 → Q = 0, I = 1

b = 1 → Q = 0, I = −1 (5)



Fig. 3. The I-Q samples are translated into pixel values by estimating their
density through a bi-variate histogram.

Our solution’s preliminary step involves converting I-Q sam-

ples into images. Many solutions have already been pro-

posed to generate red-green-blue (RGB) images from I-Q
samples [22], [23], [18], and in the following, we re-adapt

state-of-the-art solutions in order to maximize performance in

our use case. Based on empirical considerations, we consider

1, 597, 440 I-Q samples per image and a total number of

1500 images for each experiment (750 jamming and 750 no-

jamming). Figure 3 summarizes the overall process. The I-Q
plane is split into tiles, i.e., 224× 224, and then, a bi-variate

histogram is computed. For each tile, we compute the number

of I-Q samples and, in turn, we map such a number into a

pixel value. As a toy example, Fig. 3 shows three clouds of

I-Q samples with 10, 256, and 512 samples, placed on three

different tiles at positions [2, 5], [5, 5], and [8, 5]. We highlight

that the position of the clouds is not meaningful and we chose

such positions for the sake of clarity. The bi-variate histogram

counts the number of I-Q samples per tile, i.e., 10, 256, and

512, respectively, and the output is considered as the value of

a pixel in the image. Thus, assuming h is the output of the bi-

variate histogram, the pixel coordinates pR, pG, and pB will

be:

• 0 ≤ h ≤ 255, then pR = 0, pG = 0, pB = h,

• 256 ≤ h ≤ 511, then pR = 0, pG = h− 255, pB = 255,

• h > 511, then pR = h− 510, pG = 255, pB = 255.

Finally, we observe that if h > 767, the output is clipped—

this issue can be controlled by properly adjusting the number

of samples in the I-Q plane, as previously discussed. Figure 4

summarizes the image generation process. We generate I-Q
samples according to the model proposed in Section III, we

convert the I-Q samples into images, and finally, we generate

two datastores of images, i.e., XJ and XNJ , including im-

ages from the jammed and not-jammed communication links,

respectively.

Deep Learning. The datastores XJ and XNJ are now con-

sidered for the classification process. We split each datastore

Xy with y ∈ {J,NJ} into three subsets of sizes 0.6, 0.2,

and 0.2, compared to the original one, i.e., T ,V,S , which are

considered for training, validation, and testing, respectively.

IQ Samples generation Image generation Dataset generation

𝑋𝑁𝐽
𝑋𝐽

Fig. 4. I-Q samples are converted to images, which in turn are organized
into two datasets, i.e., XNJ and XJ .

We consider a state-of-the-art DL classifier (CNN), based

on a Residual Network (Resnet-18) and Inception-v3 already

implemented in MatLab2022b. The neural network models are

pre-trained with images from the ImageNet database [24],

thus requiring some modifications. Firstly, the input layers

have been adapted in order to fit the output of the bi-variate

histogram (image size), i.e., 224× 224, while the output layer

has been changed to fit the number of classes of our problem,

i.e., Jamming and No Jamming. Finally, the model has been

(partially) re-trained in order to include the features of the

images generated from the I-Q samples.

V. PERFORMANCE ANALYSIS

We start our analysis by considering the model from Fig. 2.

We set a distance between the transmitter (A) and the receiver

(B) of 30 m. Moreover, we set the distance between E
(Jammer) and B as varying between 5 and 60 m, as depicted

in Fig. 5. Moreover, we consider different (relative) jamming

transmission power spanning between 0.1 and 1. The relative

jamming power is computed as a fraction of the transmission

power of A (120 dBµV). Figure 5 shows the BER as a function

of the distance between E and B. We identify a theoretical

boundary, i.e., jamming power equal to 1—solid red line,

which highlights the scenario where the jammer adopts the

same transmission power of the legitimate transmitter. While

we acknowledge that the jamming power can be arbitrarily

large, by setting the same transmission power as the legitimate

transmitter, we identify the case of an adversary using the

same hardware as the legitimate one—this being the case of

an adversary using the same commercial devices or being

able to control one of the devices already deployed. It is

worth noting that when the relative jamming power is 1,

and the jammer is at the same distance as the legitimate

transmitter, the BER is 0.15. Moreover, we observe that the

jamming power significantly affects the BER, i.e., reducing

the jamming power makes the BER smaller independently of

the distance between the jammer and the receiver. Finally, it

is worth mentioning that, given the considered parameters, the

jammer affects the receiver up to a distance of 50 m when the

relative jamming power is smaller than 1, i.e., less or equal
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Fig. 5. Bit-Error Rate as a function of the distance between the jammer and
the receiver. The jamming power is relative to the transmission power.

to the power of the legitimate transmitter. This is a critical

distance for standard detection techniques based on higher

layer jamming detection metrics such as the SNR and BER.

Indeed, when the jammer is placed at a given location, all

devices in the neighborhood (less than 50 m) can potentially

detect its presence, but they cannot communicate it, as the

power line medium is jammed. Conversely, the devices far

away from the jammer (at a distance larger than 50 m) cannot

detect its presence since the BER is close to zero, and the

associated metrics do not allow to infer the presence of the

jammer. Our solution is specifically designed to detect the

presence of a jammer far away from its location, i.e., when the

distance between the receiver and the jammer is greater than 50
m. We consider the scenario where the jamming power equals

the transmission power of the legitimate device. Figure 6

shows the results associated with the proposed classifier while

varying the distance between the jammer and the receiver

from 70 to 100 m. Our results show that the jammer can

be identified with overwhelming probability (> 0.99) when

the distance between the jammer and the receiver is less than

75 m. Both the considered neural networks (resnet18 and

inceptionv3) behave similarly, although resnet18 is slightly

more robust to the channel noise when the distance is larger

than 75 m. Finally, Fig. 7 shows the accuracy of our solution

when the distance between the jammer and the receiver is set

to 70 m, and the relative jamming power spans between 0
and 0.5, i.e., between no jamming and half of the power of

the legitimate transmitter. Figure 7 shows that our solution can

detect with overwhelming probability (> 0.95) the presence of

a jammer in this cenario when its relative transmitting power is

higher than 0.2. As in the previous case, both neural networks

have similar performance, although resnet18 is more robust to

channel noise (and jamming).
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Fig. 6. Accuracy as a function of the distance between the jammer and the
receiver assuming the jammer and the legitimate transmitting device feature
the same transmission power.
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Fig. 7. Accuracy as a function of the jamming power, expressed as the relative
fraction with respect to the source (A). We assume the distance between the
jammer (E) and the receiver (B) is 70 m.

VI. DISCUSSION

PLC is gaining traction in several application scenarios, thus

becoming a concrete alternative to Ethernet and wireless for

data communications. Nevertheless, jamming a PLC link is

as easy as for the wireless but with the same detrimental

impact of the wired infrastructure—the receiving devices are

connected to the power line, and contrary to the wireless

scenario, they might have limited options to mitigate the

attack. Jamming detection has received much attention in

the RF scenario, while only a few contributions focused on

PLC systems. Our work highlights the limitations of current

solutions while shedding light on future challenges. Detecting

jamming in PLC systems is difficult since the main objective

of the jammer is to prevent communications. Therefore, even



assuming the PLC devices can detect the presence of a jammer,

they cannot communicate it (via the same PLC infrastructure),

thus precluding an effective response. Our solution goes be-

yond the classical jamming detection approaches, providing a

methodology to detect the presence of a jammer at a location

where the jammer does not impact the current state of the

power line (BER close to zero). Under this assumption, each

PLC device can monitor the current state of the medium

and infer the presence of a jammer from a high distance

(about 80 m). We highlight that, while model generation

(training/validation) is intense, testing can be performed even

by resource-constrained devices, thus allowing any device

being able to collect I-Q samples from the power line to detect

the presence of a jammer. Also, the time to gather I-Q samples

necessary for jamming detection is very limited (sampling

time of 1/(2 × F
c
) = 0.025 s). Our solution is particularly

suitable for scenarios where the jammer is deployed in a target

infrastructure, and a set of monitoring devices are in close

proximity. As a toy example, recalling Fig. 1, wherever the

jammer (Eve) will be deployed will affect the devices in close

proximity, e.g., the devices belonging to the same building, but

all the devices far away from the jammer will be able to detect

its presence, thus triggering alarms and countermeasures.

VII. CONCLUSION AND FUTURE WORK

We have proposed a Deep-Learning based approach to

detect jamming in a PLC system when the distance between

the jammer and the receiver is significant (up to 75 m) while

the associated BER is almost zero. While standard solutions

based on BER simply fail, our solution can detect the presence

of a jammer with a probability greater than 0.99. Given the

potential impact of jamming in PLC systems, we believe that

our solution, which combines I-Q samples converted into

images and CNNs, paves the way for future research in the

area. In the future, we plan to apply our solution to an actual

PLC deployment.
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