
Privacy-Preserving Multi-Party Access Control
for Third-Party UAV Services

Dominik Roy George
Eindhoven University of Technology

Eindhoven, The Netherlands
d.r.george@tue.nl

Savio Sciancalepore
Eindhoven University of Technology

Eindhoven, The Netherlands
s.sciancalepore@tue.nl

Nicola Zannone
Eindhoven University of Technology

Eindhoven, The Netherlands
n.zannone@tue.nl

ABSTRACT
Third-Party Unmanned Aerial Vehicle (UAV) Services, a.k.a. Drone-as-
a-Service (DaaS), are an increasingly adopted business model, which
enables possibly unskilled users, with no background knowledge,
to operate drones and run automated drone-based tasks. Although
these services provide significant advantages, the resources pro-
vided by drones are typically owned by multiple parties. Thus,
Third-Party UAV services require adopting multi-party access con-
trol solutions. In this context, the leakage of the access control
policies specified by the data owners might disclose confidential
information and, thus, they should be protected as well. In this
work, we propose a privacy-preserving multi-party access control
solution tailored to the application scenarios of Third-Party UAV
Services. Our solution advances an existing privacy-preserving
multi-party access control framework based on Secure Function
Evaluation to fit the distributed and heterogeneous nature of drone
deployments. Through an extensive experimental evaluation, we
demonstrate our solution can perform private policy evaluation on
constrained devices in a reasonable time while requiring limited
communication, memory, and energy overhead.

CCS CONCEPTS
• Security and privacy → Access control; • Theory of com-
putation → Cryptographic protocols; • Computer systems
organization→ Embedded and cyber-physical systems.

KEYWORDS
Drones; Authorization; Secure Function Evaluation

ACM Reference Format:
Dominik RoyGeorge, Savio Sciancalepore, andNicola Zannone. 2023. Privacy-
Preserving Multi-Party Access Control for Third-Party UAV Services. In
Proceedings of the 28th ACM Symposium on Access Control Models and Tech-
nologies (SACMAT ’23), June 7–9, 2023, Trento, Italy. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3589608.3593837

1 INTRODUCTION
The increasing availability on the market of Unmanned Aerial
Vehicless (UAVs), namely, drones, is making it even more appealing
to use them in various domains [5]. At the same time, regulations
applying to drone flights and professional certifications, required

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SACMAT ’23, June 7–9, 2023, Trento, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0173-3/23/06.
https://doi.org/10.1145/3589608.3593837

to fly such devices, require users to spend significant time and
money to use drones safely [28]. In this context, Third-Party UAV
Services, also referred to as Drone-as-a-Service (DaaS), represents
an emerging business model where Service Providers (SPs) lease
ready-to-use drones, as well as certified pilots, customizable to the
needs of any application scenario [6]. Today, DaaS providers are
appearing on the market at a high pace, and recent reports show
this trend will increase in the next years [7].

Although the DaaS paradigm significantly reduces the time and
effort to integrate drones into business, it also introduces security
and privacy concerns. Drones are managed by untrusted SPs, and
they access resources owned by multiple parties. Thus, DaaS sce-
narios should use multi-party access control solutions, which can
regulate access to resources through policies provided by multiple
parties [27]. At the same time, such policies might contain sensi-
tive information, e.g., relationships among Data Owners (DOs). If
leaked, such information might raise privacy issues and, possibly,
jeopardize business. Therefore, we need to adopt privacy-preserving
multi-party access control solutions for DaaS scenarios.

To the best of our knowledge, no solutions are available today
for privacy-preserving multi-party access control for constrained
devices. Some solutions available in the literature cover traditional
domains (see Sec. 3), but their usage within drones is not straightfor-
ward. Indeed, drones feature several constraints in terms of process-
ing, communication, storage, and energy. At the same time, drones
frequently operate in remote areas where Internet connectivity is
scarce and no other entities are available to assist the processes.
Therefore, currently-available solutions need to be re-engineered
to fit the requirements of the DaaS scenario.

Contribution. Our work aims to investigate the feasibility of
privacy-preserving multi-party access control schemes for Third-
Party UAV Services. Our scheme builds on top of an existing ap-
proach based on the Secure Function Evaluation (SFE) paradigm
[25], further adapting its architecture to meet the constraints and
requirements of the DaaS scenario. Through the proposed scheme,
drones can evaluate complex multi-party policies without relying
on a persistent Internet connection and without inferring user poli-
cies specified by data owners. We deployed a proof-of-concept of
the proposed scheme on a Raspberry PI 3 and performed an ex-
tensive experimental assessment to evaluate the performance of
our approach w.r.t. several key metrics for constrained devices.
The results show that our scheme can support privacy-preserving
multi-party policy evaluation on a processing-constrained device in
realistic configurations while requiring a very limited energy toll.

Roadmap. The remainder of the paper is organized as follows.
Sec. 2 introduces our scenario, use cases, and requirements. Sec. 3
discusses related work. Sec. 4 provides the details of our solution,

https://doi.org/10.1145/3589608.3593837
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589608.3593837

SACMAT ’23, June 7–9, 2023, Trento, Italy Dominik Roy George, Savio Sciancalepore, and Nicola Zannone

and Sec. 5 discusses security considerations. Sec. 6 reports an ex-
perimental evaluation of our solution using a real proof-of-concept
implementation. Finally, Sec. 7 concludes the paper.

2 SCENARIO, USE CASES, AND
REQUIREMENTS

In this section, we introduce our reference scenario and adversary
model (Sec. 2.1). We also provide practical use cases (Sec. 2.2), which
are used to extract the main requirements for achieving privacy-
preserving multi-party access control in DaaS scenarios (Sec. 2.3).

2.1 Scenario and Adversary Model
The scenario considered in this work is based on the Third-Party
UAV service architectural paradigm, referred to as DaaS. The DaaS
paradigm provides advantages in several application domains, such
as surveillance, farming, and construction [2], where individuals
and companies cannot afford to buy drones, maintain them, and/or
acquire the licenses necessary for flying UAVs.1

Without loss of generality, the DaaS paradigm enables a SP to
lease one or more drones to its customers to achieve specific tasks,
e.g., the inspection of specific equipment or areas [7, 29, 32]. The
SP provides the drones and equips them with the necessary tools,
sensors, and software applications, depending on the specific pur-
pose the drone is intended for. Moreover, the SP can provide a
professional pilot to run operations on the field. The drones and
their sensors, hereby referred to as resources, are made available for
usage and access to several Data Consumers (DCs). To interact with
the drone and access resources, DCs use controllers, i.e., software
applications that can be installed on the user equipment (such as a
smartphone) and that allow interacting with the drone, in real-time,
through a dedicated (secure) network connection.

Access to the resources provided by drones is regulated through
access control policies specified by the DOs. Specifically, DCs can
access data collected by the drone and integrated sensors only if
the access control policy associated with the resources allows for
it (see Sec. 2.2 for practical examples). In specific situations, the
DC can also be a DO. DaaS applications may also include other
entities, such as the Manufacturer, i.e., the entity that produced
the drone, which can be different from the SP. However, given that
such entities are not directly involved in the use cases tackled in
our work, we do not focus specifically on their functions.

In this work, we focus on resources owned by multiple DOs,
each with a different level of authority on the resource. Examples of
such resources include data on areas affected by natural disasters,
agriculture fields, harbors, and buildings under construction (see
Sec. 2.2 for more details). In the IT domain, the protection of such
resources is usually achieved throughmulti-party access control [21].
In this paradigm, each DO can specify access constraints on its
resources (hereafter referred to as user policy), which define under
which conditions a subject is allowed to access a given resource.
When a DC requires access to a resource, the multi-party access
control mechanism accounts for the user policies of all the owners
of that resource to determine whether the authorization should be

1Several countries have regulation in place (e.g., FAA regulations in the US [1]) requir-
ing individuals and companies using UAVs to maintain a valid drone pilot license.

granted or denied, while handling possible conflicts among the DOs’
user policies, e.g., based on their level of authority on the resource.

While the protection of co-owned resources is of utmost impor-
tance, user policies may also be sensitive. If revealed, these policies
can leak confidential information, e.g., about the relationship among
different DOs, the resource, and the specific DO [25]. The above
considerations are even more relevant in the DaaS domain. Indeed,
drones might be more easily hijacked and captured than traditional
IT systems. Moreover, manufacturers often keep remote access to
the deployed vehicles, e.g., for maintenance, and might stealthily ac-
cess such policies when performing regularmaintenance operations.
Thus, the policy content should be protected, resulting in the need
to deploy a privacy-preserving multi-party access control solution.

While solutions supporting privacy-preserving multi-party ac-
cess control have been proposed for traditional IT systems [25,
26], their application and contextualization in the DaaS scenario
poses additional challenges. Indeed, drones frequently operate in
remote locations where connectivity is scarce or not available at
all. Thus, drones cannot simply outsource operations to more pow-
erful servers available on the Internet or other network nodes, but
they have to perform all computations offline. Moreover, drones
are energy-constrained devices, which should preserve energy as
much as possible so as not to consume all the available energy too
quickly, before the expected end of their planned mission.

2.2 Use Cases
This section presents concrete use cases to illustrate the need for
privacy-preserving multi-party access control in DaaS applications.
From such use cases, we elicit the requirements that such a solution
should meet (cf. Sec. 2.3).

2.2.1 Disaster Management. Disaster management plays a major
role nowadays, and the DaaS paradigm is increasingly used in
related rescue operations [4, 22].
Application Scenario. Assume a disaster scenario, e.g., a landslide or
flooding, where several local forces (e.g., the local police, fire force,
and municipality) and state forces (e.g., the military) are involved
in rescue operations. Using a drone, such entities can better orches-
trate their interventions and optimize the distribution of forces on
the field. However, the relatively short duration of the operation
might not justify the costs needed to buy and maintain a drone;
rather, rescue forces can subscribe to a shared drone through the
DaaS paradigm to coordinate their interventions. In this context, the
military, local police, fire force, and municipality are both DOs and
DCs. Moreover, other entities may require access to the drone and
its resources, thus acting as DCs, to participate (in various capaci-
ties) in rescue operations, e.g., volunteers, paramedics, civil protec-
tion, and news channels. The resources to be accessed include read-
ings of the surrounding environment, e.g., the camera (video feed),
heat sensors (sensor data), and environmental sensormeasurements,
to identify victims and monitor the status of flooding or landslide.
Problem. Assume that, during the operations, the drone flies over a
military base near the area where the natural disaster occurred. In
such a situation, the military, acting in the capacity of DO, would
like to deny access to the video feed and heat map to rescue forces,
as they could reveal sensitive information about the base. There-
fore, the military force might deploy an access control policy on

Privacy-Preserving Multi-Party Access Control
for Third-Party UAV Services SACMAT ’23, June 7–9, 2023, Trento, Italy

the drone, explicitly denying access to the video feed to any other
entity when the drone flies in the proximity of the military base.
However, this policy might contain sensitive information, such
as the location of the areas to be protected, which should not be
disclosed to entities with access to the drone, including the SP.

As another example, consider the case where the drone discovers
dead bodies. For privacy and safety purposes, the rescue forces (po-
lice and fire forces, which are DOs) want to deny the news channels
access to the video stream. Indeed, not only private images could
be leaked, but also news-media operators might crowd the area,
obstructing rescue operations. At the same time, the knowledge
about an access control policy enforcing such a condition on the
drone would immediately reveal to the news channel why they
cannot access the video stream.
Challenge. Enforcing privacy-preserving multi-party access control
in this use case is particularly challenging. Natural disasters might
occur in remote and temporarily hard-to-reach locations, where
Internet connectivity is limited. Therefore, the drone cannot rely on
a persistent Internet connection, e.g., to delegate policy evaluation
to Cloud-based systems. As a result, access control policies should
be evaluated in a private way offline, involving only the drone
and, if present, locally-available user-owned resources, such as a
controller, while dealing with a resource-limited environment.

2.2.2 Smart Transport/Vessel Inspection. The DaaS paradigm can
also support port authorities to optimize their inspection proce-
dures while minimizing related operation and deployment costs.
Application Scenario. A harbor has port authorities responsible for
handling incoming and outgoing ships, e.g., harbormaster, immigra-
tion bureau, and coast guard. We assume that the port authorities
(DOs) feature a drone, operated according to the DaaS paradigm,
used for inspection activities and other tasks, e.g., validating the
crew’s identity, inspecting shipment documents, and checking com-
pliance with shipping regulations. In particular, the drone can be
used by the harbormaster to coordinate the traffic of vessels and
perform vessel inspections. Similarly, the immigration bureau can
use the drone to acquire and process the visa documents and pass-
ports of crew members. At the same time, we assume that the coast
guard runs periodic surveillance operations in the harbor area. To
prevent disclosure of the activities performed during these oper-
ations, the coast guard may specify an access control policy that
restricts the access to the video stream of the drone when it flies
in the proximity of the operation area.
Problem.When the drone approaches a vessel for inspection, the
harbormaster and the immigration bureau (DCs) might not be able
to access the video stream of the drone, as the trajectory of the
drone might cross the area currently patrolled by the coast guard
(DO). By looking at the policies deployed by the coast guard on the
drone, others DOs and the SP might learn sensitive information
about the operations run by the coast guard, such as the date, time,
and exact area in which such operations are performed.
Challenges. Vessel inspections typically occur some kilometers off-
shore, where persistent Internet connection is not available. There-
fore, the drone should be able to make access decisions offline (i.e.,
while not being connected to the public Internet), resorting to the
aid of only locally-available entities (e.g., a controller), while not

featuring connection to any additional network element. In this
setting, policy evaluation should not drain too much energy from
the drone’s battery, as returning to the harbor for battery recharge
would result in high costs and delays in the harbor operations.

2.2.3 Smart Construction. In smart construction, we envision that
different companies (subcontractors) can rely on the DaaS paradigm
to automatize work and reduce costs [14, 23].
Application Scenario. Assume the owner of a construction site con-
tracts multiple subcontractors, specialized in specific areas of the
site (e.g., plumbing, installing electricity lines). The site manager
can provide the subcontractors with a drone, e.g., to install electric-
ity lines. Additionally, for privacy reasons, the drone only features
a connection to the private network of the construction site owner,
thus minimizing the information transferred through the public
network. Due to safety concerns, the contractor also enables exter-
nal parties, such as the power line authority, to regulate the usage
of some resources. For instance, the power line authority (DO) can
specify access requirements to limit power usage by elements car-
ried by the drone. Indeed, abusing electricity usage during line
installation operations could lead to a power shortage or a blackout
for the entire area. At the same time, the construction site manager
(DO) can authorize external entities to access the real-time video
feed of the drone. For instance, during the electrical installation, the
authority can access the video streaming to oversee if the installed
electricity lines comply with regulations. Thus, specific installation
operations could be forbidden to the power line operator due to the
constraints imposed by the authority regulating the power grid.
Problem. If access control policies are loaded and used in clear on
the drone, all parties interacting with the drone can see the informa-
tion contained in the user policies. At the same time, an adversary
capturing the drone might access these policies. Thus, they would
know why a specific entity using the drone cannot install the elec-
tricity lines, potentially leaking sensitive information. For instance,
knowledge of constraints expressed by the power grid authority
might be misused to achieve a blackout or shortage in the region.
Challenge. While performing the planned tasks, the drone can only
connect to the construction site owner’s company network, which
might offer limited services. Also, connecting to such a network
might require a VPN connection, which is typically hard to support
on the drone because of the significant communication, processing,
and energy resources it requires [3]. Therefore, to save energy and
increase the drone’s battery lifetime as much as possible, policy
evaluation should be executed locally, either onboard or through the
assistance of locally-available users’ equipment, while preserving
the confidentiality of user policies.

2.3 Discussion
The use cases in the previous section highlight the need for the
adoption of a privacy-preserving multi-party access control scheme
in the DaaS scenario. On the one hand, multiple entities (DOs)
share ownership of resources and can specify access constraints
to regulate their access (Support for Multi-party Data Governance).
On the other hand, to enforce access control policies, the drone
needs access to the DOs’ policies and the information therein. Such
policies, however, can be sensitive. If leaked, unauthorized entities

SACMAT ’23, June 7–9, 2023, Trento, Italy Dominik Roy George, Savio Sciancalepore, and Nicola Zannone

might infer sensitive information about, e.g., the identity of the enti-
ties using the drone and their relations. For instance, unauthorized
entities might retrieve the location of military bases (use case 2.2.1),
spatio-temporal information about joint military operations (use
case 2.2.2), and the restrictions on the usage of power lines (use
case 2.2.3). Thus, DaaS use cases require an access control solution
that allows the privacy-preserving evaluation of DOs’ policies (Pol-
icy Confidentiality). In particular, the access control mechanism
should preserve the confidentiality of the access constraints in the
user policies (Attribute Confidentiality) while remaining capable of
collaborative decisions. Moreover, it should prevent someone from
linking the access decision to a specific user policy, which can be
exploited to derive the user policies (Decision Untraceability).

However, the design of such an advanced security mechanism
in DaaS applications comes with several constraints. First, drones
involved in DaaS applications might not feature persistent Internet
connection. Even when equipped with a Subscriber Identity Mod-
ule (SIM) providing mobile Internet connection, the drone might
operate in areas where Internet connectivity is temporarily out
of service (e.g., soon after a natural disaster occurred, as in use
case 2.2.1), is not available (e.g., offshore, as in use case 2.2.2), or
where there are restrictions on the type of connection to be used
(as in use case 2.2.3). As a result, drones cannot reliably outsource
access control operations to the Cloud or any fully-trusted edge
devices. Conversely, they need to evaluate access control policies
and enforce access decisions offline, at most, with the assistance of
a semi-trusted party available in the field (Outsourced Third Party).

In addition, although significant processing and storage resources
might be available, drones are typically energy-constrained devices,
which should be able to complete all planned tasks before battery
exhaustion. For instance, interrupting their tasks to re-charge the
battery might cause loss of lives as in use case 2.2.1, economic losses
as in use case 2.2.2, and construction delays as in use case 2.2.3.
Therefore, the enforcement of privacy-preserving multi-party ac-
cess control should be computationally lightweight, i.e., it should
not have a large impact on the time necessary to access resources
and the overall lifetime of the drone (Constrained Environments).

In Sec. 3, we evaluate to what extent the solutions available in the
current literature consider and address the requirements mentioned
above, motivating the need and novelty of our solution.

3 RELATEDWORK
Several works investigated privacy-preserving access control solu-
tions in the Internet of Things (IoT) domain. We summarize existing
proposals w.r.t. the requirements identified in Sec. 2.3 in Table 1.

Ciphertext-PolicyAttribute-Based Encryption (CP-ABE) schemes
are often proposed to protect resources from unauthorized ac-
cess in the IoT domain. However, these schemes typically do not
protect policy confidentiality. Several works have addressed this
gap and proposed schemes that extend CP-ABE with other tech-
niques to also ensure the confidentiality of the policies used to
protect the resources. For instance, Kominos et al. [16] propose a
privacy-preserving attribute-based encryption scheme that com-
bines CP-ABEwith pseudonyms to anonymize identifying attributes
in the policy. Nishide et al. [20] combine CP-ABE with wildcards to
protect attribute confidentiality. In this scheme, an encryptor uses

wildcards to hide attributes that are not relevant to the ciphertext
policy. This way, the decryptor does not learn the entire policy but
only the attributes that are not “hidden behind the wildcards”, thus
only partially achieving attribute confidentiality. Zhang et al. [33]
combine CP-ABE with hashing to hide the attributes defined in the
policy. Other works propose schemes that combine CP-ABE with
Linear Secrete Sharing Scheme (LSSS) [13, 31]. For instance, the
scheme in [13] uses a one-way anonymous key agreement protocol
to anonymize the attributes in the policy and stores the attribute
mapping in an LSSS matrix. The matrix is then secretly shared with
different parties. An authorized DC needs at least a given number of
shares to reconstruct the matrix, and thus, to securely authenticate
the attributes if the anonymized ones are present in the matrix. The
DC can decrypt the ciphertext only if the anonymized attributes con-
tained in the matrix are securely authenticated, without knowing
the entire set of anonymized attributes in the LSSS matrix. A similar
solution is proposed by Kan et al. [31], using a Garbled Bloom Filter
(BF) to mask the attributes in the LSSS matrix, so that the decryptor
is not able to infer the policy used to protect the resource. To achieve
attribute confidentiality, Yang et al. [19] propose a solution based
on Ciphertext-Policy Attribute-Based Signcryption (CP-ABSC), an
attribute-based encryption and signing scheme, in combination
with LSSS and Cuckoo Hashing (CH).2 This solution allows the DO
to sign and encrypt a resource using two different policies defined
over different sets of attributes hidden in the LSSS matrix using CH.

Although these approaches protect the attributes in the policy
attached to the encrypted resource, they are not fully suitable for
DaaS applications. First, they can only deal with resources that are
disclosed to the DC and do not support the protection of resources
that can be only accessed on the drone (e.g., sensors). Moreover,
the cryptographic operations underlying CP-ABE and CP-ABSC
(e.g., pairing-based decryption, attribute generation, and certificate
management) are computationally expensive and, thus, existing
schemes tailored to constrained devices typically propose to out-
source their computation to a third party. Such outsourcing, how-
ever, might not be possible in DaaS applications since persistent
Internet connectivity is often unavailable. In addition, the third
party is required to be fully trusted. By contrast, in our context,
drones operate in unknown and untrusted environments, where
they cannot rely on any fully-trusted party. Such schemes also as-
sume that the resources to be protected are governed by a single
entity. Although multi-authority-based encryption schemes are
available [8, 9], they do not support the protection of co-owned
resources. To the best of our knowledge, there are no CP-ABE
schemes supporting multi-party data governance.

Another body of research investigated the problem of privacy-
preserving policy evaluation using Homomorphic Encryption (HE).
For instance, Kapadia et al. [15] use HE together with proxy encryp-
tion to preserve attribute confidentiality. The data owner encrypts
the attributes in the policy with its public key by using the ElGamal
cryptosystem. The server checks whether the attributes of the data
consumer match with the encrypted ones and “homomorphically
multiplies” the matching encrypted attributes with random values,
which are disclosed along with the ciphertext to the client. The DC

2CH is similar to BF, which supports the dynamic insertion and removal of elements
in a bit array, thus being more efficient and with a lower false-positive rate.

Privacy-Preserving Multi-Party Access Control
for Third-Party UAV Services SACMAT ’23, June 7–9, 2023, Trento, Italy

Table 1: Comparison of privacy-preserving access control approaches.
Crypt.
Tech.

Outsourced Third Party Support for
Multi-party Data

Governance

Policy Confidentiality Constrained
EnvironmentsFully-Trusted Semi-Trusted Attribute

Confidentiality
Decision

Untraceability
Kominos et al. [16] CP-ABE
Nishide et al. [20] CP-ABE
Zhang et al. [33] CP-ABE
Fan et al. [13] CP-ABE
Kan et al. [31] CP-ABE
Ming et al. [19] CP-ABSC
Xu et al. [30] HE
Kapadia et al. [15] HE
Alishahi et al. [25, 26] HE; SFE
Our scheme SFE

decrypts the attributes to decrypt the ciphertext without learning
the individual values of the attributes associated with the ciphertext.
Xu et al. [30] propose a privacy-preserving Attribute-Based Access
Control (ABAC) scheme based on the ElGamal cryptosystem to pro-
tect user attributes. This scheme allows a DC to disclose its sensitive
attributes in an encrypted form, which are evaluated by the server
against an ABAC policy using a privacy-preserving policymatching
component without gaining any information about the DC’s at-
tribute. Although this scheme does not require a trusted third party
to protect user attributes, it only supports the privacy-preserving
evaluation of clauses containing only one comparison operator.

These proposals are not suitable for the DaaS scenario because
they assume resources owned by a single entity. To the best of
our knowledge, the only privacy-preserving solutions based on HE
supporting a multi-party governance model are the ones in [25, 26].
Alishahi et al. [26] propose a framework for the privacy-preserving
evaluation of multi-party access control policies. The framework
allows every party to independently specify policies regulating
the access to their resources, which are deployed in the resource
server in an encrypted form. The (encrypted) policies are combined
according to a predefined governance model and evaluated under
encryption, thus preserving the confidentiality of local policies and
ensuring decision untraceability. The work in [25] extends [26] by
supporting the privacy-preserving evaluation of multi-party access
control policies expressed in ABAC. The works in [25, 26] also in-
vestigate the use of SFE as an enabler for the privacy-preserving
evaluation of multi-party access control policies, showing that SFE
provides a more efficient solution compared to HE both in terms of
computation time and bandwidth usage. Differently from schemes
based on CP-ABE and CP-ABSC, which require a fully-trusted third
party when operating on constrained devices, solutions based on
HE and SFE only require a semi-trusted party to decouple access
control operations, thus preserving policy confidentiality.

Overall, as shown in Table 1, the work that fulfills the most re-
quirements is [25]. However, such a proposal cannot be directly
integrated into the DaaS scenario. Such a scheme was proposed to
address privacy issues in Online Social Networks (OSNs), where
persistent Internet connectivity is always available, and compu-
tational capabilities are always at the disposal of both the client
and the server. Conversely, in the DaaS scenario, the drone should
make access control decisions offline, without connecting to the
Internet or featuring a persistent reliable connection to a server in
the Cloud. At the same time, the drone should also minimize energy

consumption to increase lifetime. Our solution addresses these con-
siderations, contextualizing the solution proposed by [25] in the
DaaS scenario and mitigating its limitations in terms of processing
and suitability for constrained environments (non-persistent Inter-
net connection and energy limitations). We realized a prototype of
our solution and performed a thorough experimental performance
evaluation, showing its viability in the DaaS domain.

4 PRIVACY-PRESERVING MULTI-PARTY
ACCESS CONTROL IN DAAS

A main problem of existing multi-party access control solutions is
that they typically do not account for the protection of the policies,
whose disclosure can leak confidential information as well. This
problem is addressed in [25], which proposes a framework for the
privacy-preserving evaluation of multi-party access control poli-
cies. In this work, we rely on that framework for the specification
of multi-party access control policies and for the cryptographic
primitives for their secure evaluation; based on it, we propose a
privacy-preserving multi-party access control architecture for the
DaaS scenario. We first present an overview of the framework
in [25] (Sec. 4.1); we then describe the architecture of our solution
(Sec. 4.2) and the protocol flow (Sec. 4.3).

4.1 Privacy-Preserving Policy Evaluation via
Secure Function Evaluation

Our work is built on top of the framework for privacy-preserving
multi-party access control proposed in [25]. This framework allows
users to provide their policies, expressed in ABAC, in private form
and provides secure computation protocols for evaluating multi-
party policies, preserving the confidentiality of the user policies
forming the multi-party access control policy.

The authors of [25] realized their framework and secure protocol
using the SFE paradigm [10]. SFE allows several parties to compute
a function on their private inputs without revealing any information
besides the result of the function. Given two parties 𝑝1, 𝑝2 and their
corresponding inputs 𝑥 and 𝑦, each party creates secret shares for
their input, represented as ⟨𝑥⟩1, ⟨𝑥⟩2 and ⟨𝑦⟩1, ⟨𝑦⟩2 respec., such as
⟨𝑥⟩1 ⊕ ⟨𝑥⟩2 = 𝑥 and ⟨𝑦⟩1 ⊕ ⟨𝑦⟩2 = 𝑦. Each party shares one of the
input shares with the remote party and evaluates a given function 𝑓

using the shares in its possession. The actual result of the function
(𝑧 = 𝑓 (𝑥,𝑦)) can then be reconstructed by combining the shares

SACMAT ’23, June 7–9, 2023, Trento, Italy Dominik Roy George, Savio Sciancalepore, and Nicola Zannone

of the result, ⟨𝑧⟩𝑥 and ⟨𝑧⟩𝑦 , obtained by applying 𝑓 to the input
shares, i.e., 𝑧 = ⟨𝑧⟩𝑥 ⊕ ⟨𝑧⟩𝑦 .

By leveraging the SFE paradigm, the work in [25] devises secure
computation protocols for target evaluation and policy composi-
tion of ABAC policies. These protocols are used for the privacy-
preserving evaluation of multi-party access control policies. Intu-
itively, multi-party policies are created from the shares of user poli-
cies, which specify the DOs’s access constraints for their resources,
according to a policy template defining how user policies should
be combined based on the relationship between the DOs and the
resource. When receiving an access request, the server and a Semi-
Trusted Party (STP) evaluate the request, each using its share of the
multi-party policy. The access decision is obtained by combining
the shares of the decision computed by these entities on their shares
of the multi-party policy and request.

Although the proposal in [25] addresses privacy concerns in
multi-party settings, it has not been considered or applied in con-
strained scenarios, where the involved entities are characterized
by computational, communication, storage, and energy constraints,
and feature a non-persistent Internet connection. We take such a
step ahead through our work, as described in the rest of the section.

4.2 Architecture Overview
Fig. 1 presents the architectural view of the proposed privacy-
preserving multi-party access control system for the DaaS scenario.
The architecture comprises five main entities: the DOs, the SP, the
STP, the controller, and the drone.
• TheDOs are the entities that own the resources in the system.We
specifically consider amulti-owner scenario, where multiple own-
ers might share possession of a specific resource. In this context,
eachDO defines user policies (in the form of ABACpolicies), speci-
fying the access constraints a requester should fulfill to access the
protected resource. We assume that DOs are known in advance.

• The SP is the entity responsible for the services offered by the
drone and for the enforcement of DOs’ access constraints.

• The STP is a semi-trusted party that assists the SP in the privacy-
preserving evaluation of multi-party access control policy.

• The controller runs on a device possessed by the DC, equipped
with (wireless) communication capabilities, e.g., a mobile phone.
Within the controller, we identify two main independent and iso-
lated logical spaces: the client space and the STP space. The client
space encompasses the applications used by the DC to access the
resources on the drone. The STP space is controlled by the STP
and comprises a Policy Decision Point (PDP) aimed to support
the privacy-preserving evaluation of multi-party policies.

• The Drone is the entity possessing the resource(s) requested by
the DC client. When deployed for the planned mission, the drone
communicates persistently with the controller, and it does not
feature a persistent Internet connection. To protect its resources
and services, the drone includes a Access Control Module (ACM),
which comprises a Policy Enforcement Point (PEP), a PDP, a Policy
Information Point (PIP). The PEP is responsible for the interaction
with the DC’s application and enforcing the access decision; the
PDP evaluates the DC’s requests (with the assistance of the PDP
in the STP space); the PIP gathers environmental attributes (e.g.,
from sensors) needed for policy evaluation.

Figure 1: Architecture of the Privacy-Preserving Multi-Party
Access Control scheme for the DaaS scenarios.

The DOs, STP, and SP interact offline during the setup phase to
configure the access control policies for the protection of the drone’s
resources, such as data and physical capabilities provided by the
drone. The DOs create two shares of their user policy (denoted as
⟨𝑠⟩𝑥 and ⟨𝑠⟩𝑦 in Fig. 1) and provide one share to the SP and the other
to the STP. From these shares, the SP and STP separately construct
a multi-party policy, specifying the permissions to be enforced on
drone resources, based on a predefined policies templates.3 The
shares of the multi-party policy are then deployed by the SP and
STP into the drone and STP space on the controller, respectively.

When operating in the field, a DC might request access to re-
sources or services offered by the drone (through the applications
installed in the controller). Access to these resources and services is
determined at runtime in a privacy-preserving way through the in-
teraction of two entities: the controller and the drone. In particular,
the PDPs in the drone and in the STP space of the controller evaluate
the request against the share of the multi-party policy, indepen-
dently. The drone recombines the computed shares of the decision
to reconstruct the final access decision to be enforced. Note that
the whole protocol flow is executed locally between the controller
and the drone, without an online connection to the public Internet.

The communication between the controller and the drone is
managed through two interfaces. The Request/Response Handler
(RRH) manages the interaction between the application in the client
space and the drone, whereas the Protocol Handler (PH) enables
the interactions between the drone and the STP PDP for privacy-
preserving policy evaluation.

Security Assumptions.Weassume an honest-but-curious threatmodel,
where the entities behave according to the protocol specification,
but they are interested in obtaining more information from their
input, intermediary messages and output. In addition, we assume
that the SP and the STP are independent entities, which do not col-
lude. We will discuss the implications of collusion attacks in Sec. 5.
We also assume that the client space and the STP space deployed on
the controller are independent and do not interact with each other.
This can be achieved, e.g., by using containerization techniques
that provide built-in isolation among processes.

3As in [25], we assume that the policy template is defined by the SP, in agreement
with the DOs, based on their relationship with the resources to be protected.

Privacy-Preserving Multi-Party Access Control
for Third-Party UAV Services SACMAT ’23, June 7–9, 2023, Trento, Italy

4.3 Protocol Details
Our scheme includes two phases: setup phase and online phase. A
sequence diagram representing the schema is presented in Fig. 2.

Setup Phase. This phase, executed offline before the deployment
of the DaaS, involves the following steps:
(1) TheDOs generate secret shares of their user policies, i.e., ⟨𝑠⟩𝑥 , ⟨𝑠⟩𝑦 .
(2) Using a secure connection over the public Internet, the DOs

provide one secret share, i.e., ⟨𝑠⟩𝑥 , to the SP.
(3) At the same time, the DOs provide the other secret share, i.e.,

⟨𝑠⟩𝑦 , to the STP using another secure connection.
(4) Using a secure channel, the SP sends to the STP the policy tem-

plate used to construct themulti-party policy using DOs’ shares.
(5) The STP deploys the multi-party policy into the controller.
(6) Similarly, the SP deploys the multi-party policy into the drone.
Online Phase. In this phase, the DC’s controller and the drone
interact to determine whether access to the requested resources
should be granted. This phase involves the following steps:
(1) The application hosted in the client space of the controller sends

a request to the drone for accessing a resource.
(2) At reception of the request, the Drone PEP requests the Drone

PIP to provide environmental attributes for policy evaluation.
(3) The Drone PIP retrieves the environment attributes from the

drone’s sensors and sends them to the Drone PEP, which aug-
ments the access request with those attributes.

(4) The Drone PEP forwards the request to the STP PDP, which
generates two shares of the request, ⟨𝑞⟩𝑥 and ⟨𝑞⟩𝑦 , using a share
generation algorithm. One share, ⟨𝑞⟩𝑥 , is kept on the drone; the
other, ⟨𝑞⟩𝑦 , is meant for remote evaluation on the STP.

(5) The drone forwards the share ⟨𝑞⟩𝑦 to the PDP in the STP space.
(6) The Drone PDP and the PDP in the STP space evaluate their

shares of the request using their shares of multi-party policy, re-
sulting in the shares of the decision, namely, ⟨𝑑⟩𝑥 and ⟨𝑑⟩𝑦 resp.

(7) The STP PDP sends its share of the decision, i.e., ⟨𝑑⟩𝑦 , to the
Drone PDP.

(8) The Drone PDP re-combines the shares ⟨𝑑⟩𝑥 and ⟨𝑑⟩𝑦 , obtaining
the final decision 𝑑 .

(9) The final decision 𝑑 is sent to the Drone PEP for its enforcement.
(10) If the decision is permit, the drone grants access to the re-

source(s). Otherwise, if the decision is deny, the drone notifies
the requesting application that access is denied.

5 SECURITY CONSIDERATIONS
In the following, we discuss the security properties of the proposed
scheme. Overall, the discussed approach is secure against an honest-
but-curious adversary. This means that the involved parties (DC,
DOs, STP, and SP) follow the protocol steps and, at the same time,
aim to obtain sensitive information from the exchanged messages.
In this context, we can see that none of the involved entities can
learn information about the user policies. Specifically:
• The SP cannot derive the DOs’ user policies. This is because the SP
knows only one share of the user policies, which is insufficient to
obtain the user policies thanks to the SFE properties [10]. At the
same time, the SP is the entity deploying and managing the drone.
Thus, it knows the final decision and the specific request issued
by the application. This is necessary as the drone needs to provide

3. attributes

DO1 DON

1. Secret Share
Generation

STP SP Application PDP PEP PIP PDP

DroneClient
Space

STP
Space

Controller

2. Sx,1 ... Sx,N

3. Sy,1 ... Sy,N

 4. Policy Template
5. multi-party policy

6. multi-party policy

SE
TU

P
PH

A
SE

O
N

LI
N

E
PH

A
SE

1. request

2. attribute retrieval

5. Request Share

6. Policy
Evaluation

6. Policy
Evaluation

7. Decision Share

8. Shares Re-
Combination

9. Final Decision10. Resource

4. request

Figure 2: Sequence diagrams of the Setup Phase and Online
Phase of the proposed scheme.

access to the requested resource. However, this information is
insufficient to derive the individual user policies.

• The STP cannot derive the user policies nor the final access de-
cision. As we assume the STP space and the Client space in the
controller are isolated, the STP has only one share of the user pol-
icy and the policy template, not enough to infer the user policies.

• On the controller, the application knows the final decision. How-
ever, the application cannot infer the individual user policies from
it as it does not have any share. However, we highlight that the
application might attempt to reconstruct the multi-party policy,
e.g., by issuing all possible requests. However, we highlight that,
in our scenario, issuing all possible requests might be difficult, if
not impossible, as attributes are retrieved by the PIP at run time.

It is also worth discussing the impact of collusion attacks on the
security of our scheme.
Collusion between SP and DOs. Some DOs might collude with
the SP to learn the policies of the other DOs. However, the DOs and
the SP combined have only one share of the non-colluding DOs’
user policies. Thus, they cannot derive any information about these
policies from intermediary messages.
Collusion between STP and DOs. Even in the case where all but
one DOs collude with the STP, they cannot infer the user policies of
the honest DO, as the STP does not know the final decision. Thus,
the STP and the colluding DOs cannot compare such a decision
with the known user policies to derive the unknown ones.
Collusion between SP and application. Neither the SP nor the
application has access to the other share of DOs’ user policies. Thus,
even if they collude, they cannot learn them. Both entities know
the final decision; thus, neither of them learns new information.
Collusion between STP and application. Similarly to the pre-
vious case, the STP and application do not have both the shares of
the user policies. Thus, they cannot infer them. By colluding with
the application, the STP can learn the final decision. Yet, the STP
cannot derive DOs’ user policies from it.

SACMAT ’23, June 7–9, 2023, Trento, Italy Dominik Roy George, Savio Sciancalepore, and Nicola Zannone

6 EVALUATION
We evaluated our scheme, presented in Sec. 4, based on its per-
formance and feasibility in the DaaS scenario. Specifically, we are
interested in answering the following three research questions:
• RQ1: How the level of policy granularity in the scenario affects
the communication, processing, and energy cost of the proposed
privacy-preserving multi-party policy evaluation scheme on a
constrained drone and controller?

• RQ2: How the number of stakeholders in the scenario affects
the communication, processing, and energy cost of the proposed
privacy-preserving multi-party policy evaluation scheme on a
constrained drone and controller?

• RQ3: How does the proposed scheme perform compared to alter-
native privacy-preserving solutions available in the literature?
DaaS scenarios are typically highly dynamic. Thus, they require

solutions able to adapt to different contexts. In the field of access
control, this is usually achieved by employing fine-grained policies,
which give users more control over the data. However, support-
ing a fine granularity often requires access requests to include a
large number of attributes for their evaluation, which might impact
system performance. RQ1 investigates the impact of policy gran-
ularity (represented as the number of attributes to be evaluated)
on the performance of the proposed scheme in terms of processing,
communication, and energy costs. Moreover, the number of stake-
holders in the scenario (e.g., DOs) may impact system performances,
which is the focus of RQ2. The number of stakeholders managing
the resources is typically reflected in the complexity and size of
the access control policy, where larger and more complex policies
might require higher execution time, communication overhead,
and energy cost for policy evaluation. For both RQ1 and RQ2, we
are interested in such performance costs on both the constrained
drone and the controller hosting the STP. Knowing beforehand the
protocol’s demands on both entities can help manufacturers and
SPs deploy devices with the necessary processing, communication,
and energy capabilities to achieve the planned tasks and minimize
deployment costs. In this work, we employ SFE as the underlying
privacy-preserving technique for the proposed scheme. RQ3 aims
to assess this choice by comparing our solution against the use
of other privacy-preserving techniques available in the literature,
applied in traditional IT domains.

6.1 Proof-of-Concept Implementation and
Deployment

To answer our research questions, we implemented a proof-of-
concept of our proposed solution.4 For our implementation, we
got inspiration from the work in [25], which presents a prototype
implementation of their approach for the privacy-preserving evalu-
ation of multi-party access control policies. Their prototype relies
on the ABY framework [10] as the main building block. In a nut-
shell, the ABY framework provides basic modules to design secure
two-party computation protocols using Arithmetic, Boolean cir-
cuits, and Yao’s garbled circuits. However, the prototype in [25]
was used to evaluate the performance of the approach using a fully
local simulation running on a single machine. In this respect, it

4The source code is available at https://github.com/DominikRoy/PP-DaaS .

does not support the pre-sharing of the user policies and remote
connections, as required by the DaaS scenario.

For our proof-of-concept, we followed the same logic of [25]
but provided additional functionalities to support a network en-
vironment compliant with the DaaS scenario. In particular, we
(i) organized the code into several processes, (ii) distributed such
processes on several hardware platforms, and (iii) enabled remote
communication capabilities using communication sockets. In this
context, a major improvement of our implementation is the adop-
tion of the PutINSharedGate available from the ABY framework
instead of using the PutINGate as in [25]. Specifically, using the
PutINSharedGate allows us to compute and pre-deploy the shares of
the user policies during the setup phase rather than providing these
policies in plain-text during the online phase, as was done in [25].
To achieve privacy-preserving multi-party policy evaluation, we
used 32-bit Boolean circuits and configured the ABY framework to
provide a security level of 114 bits.

To answer RQ3, we additionally implemented another proof-of-
concept based on the Partially Homomorphic Encryption (PHE)-
based protocol proposed in [25]. In this regard, we also considered
using Fully Homomorphic Encryption (FHE) in the benchmark
protocol. At a first glance, applying FHE might appear a suitable
choice for our scenario due to the well-known properties of FHE
to carry out both additions and multiplications in the encrypted
domain. However, we discarded such an option as, to preserve
policy confidentiality, an equivalent scheme based on FHE would
also require the deployment of an online third party (not to let
the drone know the user policies). When such a third party is in-
volved in the protocol, a solution based on FHE would require more
computational overhead than a solution based on PHE due to the
well-known high processing toll of FHE schemes. For implementing
PHE-based operations, we used the GMP multiprecision library,
in the C++ programming language. To enable a fair comparison
with our approach, we improved the original implementation using
actual remote sockets. Thus, the results reported in Sec. 6.5 consider
the same deployment of our proposed approach and the competing
solution in terms of hardware, software, and communication setup.

We deployed our proof-of-concept implementations on a real
heterogeneous network. To emulate the drone, we used a Raspberry
PI 3 Model B+ [24]. This is an embedded platform equipped with a
Cortex-A53 processor running at 1.4 GHz, 1GB of RAM, and 16GB
of storage. As acknowledged in the literature [17, 18], the computa-
tional and bandwidth resources offered by the Raspberry PI are com-
parable to the ones provided by low-end commercial drones, and, re-
cently, some commercial drones integrating a Raspberry PI as an on-
board CPU also became available on themarket [12]. Thus, using the
Raspberry PI allows us to evaluate our solution in a realistic setting.

On the other hand, we considered two deployment setups for
the controller hosting the STP. In the first setup, we used a regular
laptop Lenovo Thinkpad P1, equipped with two Intel Core i7-8750H
processors running at 2.20 GHz, 32GB of RAM, and 1 TB of SDD
Storage, while in the second we used a Raspberry PI 3 Model B+.
Hereafter, we refer to the two setups as Testbed 1 and Testbed 2, re-
spectively. These testbeds allow us to investigate the system perfor-
mance when heterogeneous hardware is used as a controller. When
run on the laptop, the STP executes in a Docker virtual environment,
while it executes as a native process when run on the Raspberry Pi.

https://github.com/DominikRoy/PP-DaaS

Privacy-Preserving Multi-Party Access Control
for Third-Party UAV Services SACMAT ’23, June 7–9, 2023, Trento, Italy

1 5 10 15 20
Request Size

10 1

100

101

102
Ru

nt
im

e
[m

s]

(a)

Setup Phase Testbed 1
Drone RPI
STP Docker

1 5 10 15 20
Request Size

103

104

Ru
nt

im
e

[m
s]

(b)

Online Phase Testbed 1
Drone RPI
STP Docker

1 5 10 15 20
Request Size

105

106

107

Co
m

m
. O

ve
rh

ea
d

[b
yt

es
]

(c)

Comm. Overhead Testbed 1
Drone RPI
STP Docker

1 5 10 15 20
Request Size

105

M
em

or
y

Us
ag

e
[k

by
te

s]

(d)

RAM USAGE Testbed 1
Drone RPI
STP Docker

1 5 10 15 20
Request Size

10 1

100

101

102

Ru
nt

im
e

[m
s]

(e)

Setup Phase Testbed 2
Drone RPI
STP RPI

1 5 10 15 20
Request Size

103

104
Ru

nt
im

e
[m

s]

(f)

Online Phase Testbed 2
Drone RPI
STP RPI

1 5 10 15 20
Request Size

105

106

107

Co
m

m
. O

ve
rh

ea
d

[b
yt

es
]

(g)

Comm. Overhead Testbed 2
Drone RPI
STP RPI

1 5 10 15 20
Request Size

105

M
em

or
y

Us
ag

e
[k

by
te

s]

(g)

RAM USAGE Testbed 2
Drone RPI
STP RPI

Figure 3: Experiments results for Testbed 1 (top row) and Testbed 2 (bottom row) varying the request size

From the communication perspective, the Raspberry Pi modelling
the drone and the STP (running either on another Raspberry Pi or
on the laptop) communicate over an ad-hoc WiFi network.

6.2 Evaluation Metrics
To assess the practical feasibility of our scheme for the DaaS sce-
nario, we evaluated our proof-of-concept implementations in terms
of processing, communication, and energy costs.

We measured the processing costs for evaluating an access re-
quest in terms of the execution time of the setup phase (in millisec-
onds), the execution time of the online phase (in milliseconds), and
RAM occupancy (in kilobytes). To carry out time measurements, we
leveraged the integrated measurement system provided by the ABY
framework. The ABY framework provides built-in benchmarking
routines to measure the execution time of its various phases (setup,
circuit generation, garbling, OTextension, online). However, these
phases do not precisely map to the phases of our scheme. Thus, for
measuring the execution time of the setup phase of our scheme, we
considered the combined time required for the initialization of the
ABY framework (setup), the circuit generation, and the garbling
(encryption of the circuit). For the online phase of our scheme, we
considered the sum of the time to execute the online phase of the
ABY framework and OTExtension. Note that the OTExtension falls
into the online phase of our scheme since this process concerns the
generation and distribution of the shares of the access request. To
measure RAM occupancy, we used the Linux tool “/usr/bin/time
-v”, which provides the highest instantaneous RAM consumption of
a given process. Such a metric allows us to determine the maximum
RAM demands of the proposed approach, thus providing an indica-
tion of the necessary RAM to be deployed on the involved devices.

We evaluated communication costs by measuring the communi-
cation overhead introduced by our scheme (in bytes). To this end,
we leveraged the integrated measurement system provided by the
ABY framework, which reports the summation of bytes sent and

received during the setup phase, online phase, garbling (encryption
of the circuits), and OTtransfer, for both the client and server.

We also measured the energy consumption (in milliJoule) re-
quired by the drone and the STP to evaluate an access request. To
this end, we used powertop, a software-based energy estimation tool
provided by the Linux OS. Powertop estimates the power (in Watt)
of a running process. Then, to compute the energy consumption of
the process, we multiply such a power estimate for the (measured)
duration of the online phase, as: 𝐸 = 𝑃 × Δ𝑡 , being 𝐸 the estimated
energy in Joule, 𝑃 the power (in Watt) estimated by powertop and
Δ𝑡 the duration of the online phase.

6.3 Experiment 1: Impact of the Request Size
This experiment aims to answer RQ1 by evaluating the impact
of policy granularity (represented in terms of request size) on the
relevant system performance metrics described in Sec. 6.2 on both
the drone and the controller.
Settings. For this experiment, we fixed the policy size to 10 and
increased the request size (i.e., the number of attributes provided in
the access request) from 1 to 20. For each request size, we generated
200 different access requests. In the results, we report the average
for every performance metric.
Results. Fig. 3 reports the average execution time of the setup and
online phases, communication overhead, and RAM required by the
proposed scheme using the log scale on the y-axis while increasing
the request size (x-axis). We also show the 95% confidence interval
of the measurements through shaded areas. The figure is organized
in two rows and four columns, where the top row refers to the
results obtained by running the STP as a docker instance on the
laptop (Testbed 1), and the bottom row refers to the measurements
obtained by running the STP on a Raspberry PI (Testbed 2).

We observe that increasing the request size results in an increase
of all performancemetrics, except for the execution time of the setup
phase, which remains almost constant regardless of the request size.

SACMAT ’23, June 7–9, 2023, Trento, Italy Dominik Roy George, Savio Sciancalepore, and Nicola Zannone

1 5 10 15 20
Request Size

103

104

En
er

gy
 C

on
su

m
pt

io
n

[m
J]

Drone RPI
STP RPI

Figure 4: Experimental energy consumption of the controller
and drone in Testbed 2, varying the request size.

Specifically, the setup phase takes between 6 and 20ms on the Rasp-
berry Pi, whereas it takes between 0.15 and 0.17 ms on the laptop.

The execution time of the online phase increases with the request
size for both testbeds. On Testbed 1, the drone takes, on average,
482 ms for completing the online phase with a request size of 1, and
the execution time grows to 3, 730 ms for requests of size 20. On
the other hand, the STP takes, on average, 1, 322 ms for completing
the online phase with requests of size 1 and 4, 604 ms for requests
of size 20. We believe this result, which might appear surprising,
is due to the working logic of Docker containers, which cannot
efficiently allocate enough resources to the process. The drone and
the STP require the same amount of communication overhead and
RAM, ranging from 0.14 and 26Mbytes, for a request size of 1 to
5.8 and 162Mbytes, respectively, for a request size of 20. On Testbed
2, the drone and the STP take approximately the same time for
completing the online phase, ranging from 410 ms for requests of
size 1 to 7, 045 ms for requests of size 20. Moreover, the drone and
the STP require the same amount of communication overhead and
RAM required in Testbed 1. Comparing Fig. 3(b) with Fig. 3(f), we
notice that the drone in Testbed 2 always requires more time than in
Testbed 1. Conversely, the STP in Testbed 2 requires less time than
the STP in Testbed 1 when the request size is lower than 5, but its
performance degrades faster for higher values of the request size.

We also measured the energy consumption of our scheme for
Testbed 2 varying the request size.5 The results are reported in Fig. 4.
In line with the results in Fig. 3(f), the energy consumption of the
involved entities increases with the increase of the request size. To
provide a few examples, for requests of size 8, the drone requires
approx. 4, 338.71 mJ, while the STP consumes 3, 603.17 mJ. Such a
consumption on the drone translates into 0.158 mAh. Considering
that an actual drone such as the DJI Mini 2 features a battery with
a capacity of 5, 200 mAh [11], such a consumption corresponds to
approx. 0.003% of the overall drone battery capacity, with minimal
impact on the drone’s lifetime.

6.4 Experiment 2: Impact of Policy Size
The number of stakeholders involved in the management of re-
sources influences the size and complexity of the policies to be
evaluated and, thus, system performance. This experiment aims
to investigate such impact by assessing how the increase in policy
size affects the relevant system performance metrics described in
Sec. 6.2 on both the drone and controller.

5For Testbed1 we did not measure the energy consumption, because Docker does not
has the kernel access for powertop to read the energy estimates.

Settings.We fixed the request size to 10 and increased the policy size
(i.e., the number of atomic access constraints in the policy) from 1
to 50. For each policy size, we generated 200 different policies. In
the results, we report the average for every performance metric.
Results. Fig. 5 reports the average time of the setup and online phases,
communication overhead, and RAM consumption of the proposed
solution when increasing the policy size in Testbed 1 (top row) and
Testbed 2 (bottom row). As for the previous experiments, we also
report the 95% confidence interval of all measurements.

Overall, Fig. 5 shows a similar trend compared to the results
reported in Fig. 3. All the metrics under investigation increase with
the increase of the policy size, but the time for the setup phase,
which remains constant in the range between 6 and 20 ms.

As for the execution time of the online phase, we notice that it
increases faster for policies of size between 1 and 10 compared to
larger policies. On Testbed 1, the drone takes, on average, 1, 849 ms
for evaluating a policy size of 6 while requiring a communication
overhead of 1.69 Mbytes and 70.4 Mbytes of RAM. At the same
time, the STP takes, on average, 2, 864 ms, in line with the findings
of Fig. 3. On Testbed 2, the drone and the STP take, on average,
2, 378 ms for evaluating a policy size of 6 while requiring the same
amount of communication overhead and RAM of Testbed 1. As for
the previous experiment, we believe these results are acceptable
for applying our solution in real settings, as they do not degrade
too much the experience of the users and the quality of the offered
services. On the other hand, considering the worst-case of a policy
size of 50, the online phase of the scheme requires an execution time
of 12, 619 ms on the drone and 13, 595 ms on the STP (Testbed 1).

We also measured the energy consumption of our scheme for
Testbed 2 varying the policy size. The results are reported in Fig. 6.
Similarly to the results in Fig. 4, the energy consumption increases
with the increase of the policy size. With a policy of size 6, the
drone requires approx. 3, 308.98 mJ. Yet, considering the DJI Mini
2, such a consumption corresponds to 0.0023% of the overall drone
battery capacity. Such a limited energy toll confirms the minimal
impact of our solution on the drone’s lifetime.

6.5 Experiment 3: Comparison
In this experiment, we compare the solution described in Sec. 4
against the approach based on PHE proposed in [25].
Settings. In this experiment, for each of the two selected approaches,
we fixed the request size to 10 and increased the policy size from 1
to 12. For each policy size, we generated 200 different policies. In the
results, we report the average values of each measurement together
with the 95% confidence intervals, depicted through shaded areas.
Results. Fig. 7 reports the results of our investigation, focusing on
the time required in the online phase by the two approaches, the
communication overhead and RAM occupancy.

The results show that the approach proposed in [25] requires,
on average, two orders of magnitude more time than our solution.
At the same time, the solution in [25] requires less communication
overhead than ours, especially on the drone. This is due to the com-
munication overhead introduced by the OTExtension, which is used
by our scheme during the online phase to generate and exchange
the shares of the circuit between the involved entities. Finally, we
notice that our solution also requires more RAM than [25]. Indeed,

Privacy-Preserving Multi-Party Access Control
for Third-Party UAV Services SACMAT ’23, June 7–9, 2023, Trento, Italy

1 10 30 50
Policy Size

10 1

100

101

102
Ru

nt
im

e
[m

s]

(a)

Setup Phase Testbed 1
Drone RPI
STP Docker

1 10 30 50
Policy Size

103

104

Ru
nt

im
e

[m
s]

(b)

Online Phase Testbed 1
Drone RPI
STP Docker

1 10 30 50
Policy Size

106

107

Co
m

m
. O

ve
rh

ea
d

[b
yt

es
]

(c)

Comm. Overhead Testbed 1
Drone RPI
STP Docker

1 10 30 50
Policy Size

105

M
em

or
y

Us
ag

e
[k

by
te

s]

(d)

RAM USAGE Testbed 1
Drone RPI
STP Docker

1 10 30 50
Policy Size

10 1

100

101

102

Ru
nt

im
e

[m
s]

(e)

Setup Phase Testbed 2
Drone RPI
STP RPI

1 10 30 50
Policy Size

103

104

Ru
nt

im
e

[m
s]

(f)

Online Phase Testbed 2
Drone RPI
STP RPI

1 10 30 50
Policy Size

106

107

Co
m

m
. O

ve
rh

ea
d

[b
yt

es
]

(g)

Comm. Overhead Testbed 2
Drone RPI
STP RPI

1 10 30 50
Policy Size

105

M
em

or
y

Us
ag

e
[k

by
te

s]

(h)

RAM USAGE Testbed 2
Drone RPI
STP RPI

Figure 5: Experiments results for Testbed 1 (top row) and Testbed 2 (bottom row) varying the policy size

1 10 30 50
Policy Size

103

104

En
er

gy
 C

on
su

m
pt

io
n

[m
J]

Drone RPI
STP RPI

Figure 6: Experimental energy consumption of the controller
and drone in Testbed 2, varying the policy size.

building, maintaining, and executing operations on circuits requires
more RAM than performing additions in the encrypted domain.

6.6 Discussion
The results of our experiments show that system performance de-
grades when the size of requests and policies increases. Although
in extreme cases (request size 20 and policy size 50) the privacy-
preserving evaluation of multi-party access control policies on
constrained devices is challenging, the experiments demonstrate
that the proposed scheme is feasible in real-world DaaS scenarios
when a reasonable number of attributes needs to be evaluated and
when reasonably complex policies are deployed. For instance, the
drone takes approximately 1, 599 ms to complete the online phase
for a request size of 8 and a policy size of 10 (cf. Fig. 3). In the same
settings, our solution requires approx. 2.23 Mbytes of communi-
cation overhead and 85Mbytes of RAM space, being tolerable for
an actual commercial drone. We highlight that in such configura-
tions the consumed energy is approx. 0.003% of the overall battery
capacity, not requiring to equip the drone with large batteries.

By comparing Testbed 1with Testbed 2, we also notice differences
in the impact of the request size on the execution time of the online
phase on different devices. By comparing Figs. 3(b) and (f) for the

STP running in Docker, the time is lower for Testbed 1 for requests
of size 5 or less; for larger requests, lower values are observed in
Testbed 2. Such an unexpected behavior is caused by the OTexten-
sion of the ABY framework, as more communication overhead is
required between Docker and the host system for larger requests.
This is confirmed by comparing Figs. 5(b) and (f), where we do not
observe this behavior. Indeed, the request size for such experiments
is the same, not affecting the execution time.

Finally, the results reported in Fig. 7 confirm that our approach
requires much less time than the PHE-based solution in [26], being
more suitable for DaaS scenarios. The reduction in the execution
time comes at the cost of an increased communication overhead and
RAM. However, these values remain reasonably low to be tolerable
on modern commercial drones.

7 CONCLUSIONS AND FUTUREWORK
In this work, we proposed a privacy-preserving multi-party ac-
cess control solution for emerging Third-Party UAV Services, a.k.a.,
Drone-as-a-Service. As a distinctive advantage, our solution allows
multiple DOs to provide their policies in a private form. These
policies are evaluated in a privacy-preserving way by relying on
the SFE paradigm, thus protecting sensitive information therein.
We deployed a proof-of-concept of our solution on two testbeds,
emulating the drone through a Raspberry PI 3 Model B+ device. We
showed that our solution achieves privacy-preserving multi-party
policies evaluation for system configurations typical of real-world
use cases in a reasonable time. We also evaluated communication
overhead, RAM occupancy, and energy consumption, showing the
suitability of the proposed approach for Drone-as-a-Service scenar-
ios. Overall, our work makes a step further in demonstrating the
viability of privacy-preserving techniques on commercial drones.
In the future, we plan to test our solution on real drones.

SACMAT ’23, June 7–9, 2023, Trento, Italy Dominik Roy George, Savio Sciancalepore, and Nicola Zannone

1 2 4 6 8 10 12
Policy Size

103

104

105

106

107

Ru
nt

im
e

[m
s]

(a)

Online Phase Testbed 1
Drone RPI PHE
STP Docker PHE
Drone RPI SFE
STP Docker SFE

1 2 4 6 8 10 12
Policy Size

106

107

Co
m

m
. O

ve
rh

ea
d

[b
yt

es
]

(b)

Comm. Overhead Testbed 1
Drone RPI PHE
STP Docker PHE
Drone RPI SFE
STP Docker SFE

1 2 4 6 8 10 12
Policy Size

104

105

106

M
em

or
y

Us
ag

e
[k

by
te

s]

(c)

RAM USAGE Testbed 1
Drone RPI PHE
STP Docker PHE
Drone RPI SFE
STP Docker SFE

1 2 4 6 8 10 12
Policy Size

103

104

105

106

107

Ru
nt

im
e

[m
s]

(d)

Online Phase Testbed 2
Drone RPI PHE
STP RPI PHE
Drone RPI SFE
STP RPI SFE

1 2 4 6 8 10 12
Policy Size

106

107

Co
m

m
. O

ve
rh

ea
d

[b
yt

es
]

(e)

Comm. Overhead Testbed 2
Drone RPI PHE
STP RPI PHE
Drone RPI SFE
STP RPI SFE

1 2 4 6 8 10 12
Policy Size

104

105

106

M
em

or
y

Us
ag

e
[k

by
te

s]

(f)

RAM USAGE Testbed 2
Drone RPI PHE
STP RPI PHE
Drone RPI SFE
STP RPI SFE

Figure 7: Experimental results of our approach and the solution in [25] for Testbed 1 (top row) and Testbed 2 (bottom row),
varying the policy size.

ACKNOWLEDGMENTS
This work has been supported by the INTERSECT project, Grant
No. NWA.1162.18.301, funded by Netherlands Organisation for
Scientific Research (NWO). Any opinions, findings, conclusions, or
recommendations expressed in this work are those of the author(s)
and do not necessarily reflect the views of NWO.

REFERENCES
[1] [n.d.]. Become a Drone Pilot. https://www.faa.gov/uas/commercial_

operators/become_a_drone_pilot/ (Accessed: 2023-03-01).
[2] [n.d.]. Drone Services Market. https://www.fortunebusinessinsights.

com/drone-services-market-102682 (Accessed: 2023-03-01).
[3] Antonio De Rubertis, et al. 2013. Performance evaluation of end-to-end security

protocols in an Internet of Things. In SoftCOM. 1–6.
[4] Ludovic Apvrille, Tullio Tanzi, and Jean Dugelay. 2014. Autonomous drones for

assisting rescue services within the context of natural disasters. In GASS. 1–4.
[5] Kais Belwafi, Ruba Alkadi, Sultan A. Alameri, Hussam Al Hamadi, and Abdulhadi

Shoufan. 2022. Unmanned Aerial Vehicles’ Remote Identification: A Tutorial and
Survey. IEEE Access 10 (2022), 87577–87601.

[6] Corinne Bernstein. [n.d.]. What is drone services (UAV services)? https://
tinyurl.com/jtd8p5sr (Accessed: 2023-03-01).

[7] Business Wire. 2021. Global Drones as a Service Market - by Applications and
Leading Industries. tinyurl.com/yw29enwt (Accessed: 2023-03-01).

[8] Melissa Chase. 2007. Multi-authority Attribute Based Encryption. In Theory of
Cryptography. Springer, Berlin, Heidelberg, 515–534.

[9] Melissa Chase and Sherman S.M. Chow. 2009. Improving Privacy and Security
in Multi-Authority Attribute-Based Encryption. In CCS ’09. 121–130.

[10] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation.

[11] DJI. 2021. DJI Mini 2 Specs. https://www.dji.com/nl/mini-2/specs.
(Accessed: 2023-03-01).

[12] DroneDOJO. 2021. Raspberry Pi Drone | The Ultimate Project Drone. https:
//dojofordrones.com/raspberry-pi-drone/. (Accessed: 2023-03-01).

[13] Kai Fan, Huiyue Xu, Longxiang Gao, Hui Li, and Yintang Yang. 2019. Efficient and
privacy preserving access control scheme for fog-enabled IoT. Future Generation
Computer Systems 99 (2019), 134–142.

[14] Han Jin. 2021. Drones in construction 2022: Top Full Guide For You. https:
//lucidcam.com/drones-in-construction/

[15] Apu Kapadia, Patrick P. Tsang, and Sean W. Smith. 2007. Attribute-Based Pub-
lishing with Hidden Credentials and Hidden Policies. In NDSS.

[16] Nikos Komninos and Aisha Junejo. 2015. Privacy Preserving Attribute Based
Encryption for Multiple Cloud Collaborative Environment. In UCC. 595–600.

[17] Anis Koubâa, Adel Ammar, Mahmoud Alahdab, Anas Kanhouch, and Ah-
mad Taher Azar. 2020. Deepbrain: Experimental evaluation of cloud-based
computation offloading and edge computing in the internet-of-drones for deep
learning applications. Sensors 20, 18 (2020), 5240.

[18] Huimin Lu, Yujie Li, Shenglin Mu, Dong Wang, Hyoungseop Kim, and Seiichi
Serikawa. 2017. Motor Anomaly Detection for Unmanned Aerial Vehicles Using
Reinforcement Learning. IEEE Internet of Things Journal 5, 4 (2017), 2315–2322.

[19] YangMing and Tingting Zhang. 2018. Efficient Privacy-Preserving Access Control
Scheme in Electronic Health Records System. Sensors 18 (10 2018), 3520.

[20] Takashi Nishide, Kazuki Yoneyama, and Kazuo Ohta. 2008. Attribute-Based
Encryption with Partially Hidden Encryptor-Specified Access Structures. In
ACNS ’08. Springer, 111–129.

[21] Federica Paci, Anna Cinzia Squicciarini, and Nicola Zannone. 2018. Survey on
Access Control for Community-Centered Collaborative Systems. ACM Comput.
Surv. 51, 1 (2018), 6:1–6:38.

[22] Pere Molina, M. Eulàlia Paré, Ismael Colomina et al. 2012. Drones to the Rescue!
Unmanned Aerial Search Missions Based on Thermal Imaging and Reliable
Navigation. InsideGNSS 7 (2012), 36–47.

[23] David Perroud. 2021. Drones in construction and infrastructure. https:
//tinyurl.com/mr4b6hmt (Accessed: 2023-Mar-01).

[24] Raspberry Pi 3 Model B+. 2021. https://www.raspberrypi.org/
products/raspberry-pi-3-model-b-plus/. (Accessed: 2023-03-01).

[25] Mina Sheikhalishahi, Ischa Stork, and Nicola Zannone. 2021. Privacy-preserving
policy evaluation in multi-party access control. J. Comput. Secur. 29 (2021),
613–650.

[26] Mina Sheikhalishahi, Gamze Tillem, Zekeriya Erkin, and Nicola Zannone. 2019.
Privacy-Preserving Multi-Party Access Control. In WPES. ACM, 1–13.

[27] Anna Cinzia Squicciarini, Sarah Michele Rajtmajer, and Nicola Zannone. 2018.
Multi-party access control: requirements, state of the art and open challenges. In
SACMAT. ACM, 49–49.

[28] Eva Wisse, Pietro Tedeschi, Savio Sciancalepore, and Roberto Di Pietro. 2023.
A2RID-Anonymous Direct Authentication and Remote Identification of Commer-
cial Drones. IEEE Internet of Things J. (2023).

[29] Dan Woods. 2017. 10 Killer Use Cases: What Drones-as-a-Service Can Do For Your
Business. https://tinyurl.com/5bhpm44x (Accessed: 2023-03-01).

[30] Yang Xu, Quanrun Zeng, GuojunWang, Cheng Zhang, Ju Ren, and Yaoxue Zhang.
2018. A Privacy-Preserving Attribute-Based Access Control Scheme. In SpaCCS.

[31] Kan Yang, Qi Han, Hui Li, Kan Zheng, Zhou Su, and Xuemin Shen. 2017. An Effi-
cient and Fine-Grained Big Data Access Control SchemeWith Privacy-Preserving
Policy. IEEE Internet of Things Journal 4, 2 (2017), 563–571.

[32] Justin Yapp, Remzi Seker, and Radu Babiceanu. 2016. UAV as a service: Enabling
on-demand access and on-the-fly re-tasking of multi-tenant UAVs using cloud
services. In DASC. IEEE, 1–8.

[33] Yinghui Zhang, Xiaofeng Chen, Jin Li, Duncan S. Wong, and Hui Li. 2013. Anony-
mous Attribute-Based Encryption Supporting Efficient Decryption Test. In ASIA
CCS ’13. ACM, 511–516.

https://www.faa.gov/uas/commercial_operators/become_a_drone_pilot/
https://www.faa.gov/uas/commercial_operators/become_a_drone_pilot/
https://www.fortunebusinessinsights.com/drone-services-market-102682
https://www.fortunebusinessinsights.com/drone-services-market-102682
https://tinyurl.com/jtd8p5sr
https://tinyurl.com/jtd8p5sr
tinyurl.com/yw29enwt
https://www.dji.com/nl/mini-2/specs
https://dojofordrones.com/raspberry-pi-drone/
https://dojofordrones.com/raspberry-pi-drone/
https://lucidcam.com/drones-in-construction/
https://lucidcam.com/drones-in-construction/
https://tinyurl.com/mr4b6hmt
https://tinyurl.com/mr4b6hmt
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://tinyurl.com/5bhpm44x

	Abstract
	1 Introduction
	2 Scenario, Use Cases, and Requirements
	2.1 Scenario and Adversary Model
	2.2 Use Cases
	2.3 Discussion

	3 Related Work
	4 Privacy-preserving multi-party access control in DaaS
	4.1 Privacy-Preserving Policy Evaluation via Secure Function Evaluation
	4.2 Architecture Overview
	4.3 Protocol Details

	5 Security Considerations
	6 Evaluation
	6.1 Proof-of-Concept Implementation and Deployment
	6.2 Evaluation Metrics
	6.3 Experiment 1: Impact of the Request Size
	6.4 Experiment 2: Impact of Policy Size
	6.5 Experiment 3: Comparison
	6.6 Discussion

	7 Conclusions and Future Work
	References

