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Abstract. Multi-Factor Authentication (MFA) schemes currently used
for verifying the authenticity of Internet banking transactions rely ei-
ther on dedicated devices (namely, tokens) or on out-of-band channels—
typically, the mobile cellular network. However, when both the dedicated
devices and the additional channel are not available and the Primary Au-
thentication Terminal (PAT) is compromised, MFA schemes cannot re-
liably guarantee transaction authenticity. The afore-mentioned situation
is typical, e.g., offshore or on-board of aircraft, when only few untrusted
terminals have Internet connection. In this paper, we present FRAC-
TAL, a new scheme providing single-channel transaction MFA through
general-purpose additional authentication terminals. Moreover, the pro-
posed solution is also resilient against a potentially-compromised PAT.
FRACTAL easily scales up as per the number of multiple authentication
factors, and it is extensible beyond the banking scenario, e.g., to unat-
tended and constrained scenarios, by integrating also Internet of Things
(IoT) devices as additional authentication terminals. Our experimental
performance assessment over a real Proof-of-Concept shows that FRAC-
TAL can complete a transaction in about 2 seconds, independently from
the remote server location, hence emerging as a secure and flexible solu-
tion with an expected high potential impact in the authentication field,
for both Industry and Academia.
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1 Introduction

The capillary diffusion of Internet services in the last decade has certified the
shift of banking services from in-person to online [1], and this trend has been
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even magnified by the COVID19 pandemic. Nowadays, all banks offer web plat-
forms and mobile smartphone applications allowing users with an active bank
subscription to manage their funds online [2].

Despite the evident advantages, the afore-mentioned shift carries a plethora
of security issues. For instance, powerful remote attackers could steal legiti-
mate users’ credentials to fully impersonate them on the web, e.g., by initiating
unauthorized monetary transactions, leading to huge economic losses for both
individuals and companies [3]. To offer enhanced security to their customers,
many bank service providers currently implement user Multi-Factor Authenti-
cation (MFA) solutions [4]. Specifically, user MFA schemes require the client
to provide multiple pieces of evidence to demonstrate to be the same physical
person associated with the end-user account. Typically, user MFA occurs via ei-
ther the delivery of a one-time Personal Identification Number (PIN) to a device
registered by the end-user with the bank, such as a mobile cellular number, or
proving to be in possession of dedicated smart card readers, released by the bank
to the user [5]. Moreover, recent standards such as FIDO and FIDO2/WebAuthN
provided multiple standardized mechanisms and out-of-the-box APIs to perform
user authentication on several platforms [6].

In this context, mutual transaction MFA protocols focus on ensuring the
authenticity of the Internet transactions. Such schemes have been widely inves-
tigated, both in the literature and in the industry/banking domain (see Sec. 6
and the survey in [4]). Nonetheless, currently-deployed solutions strongly rely
on the availability of either dedicated devices (such as reader/token generators),
used specifically for authentication purposes, or additional channels to the Inter-
net connection, e.g., the cellular network, used to deliver the one-time password.
When they are not available, their security relies on the security of the pri-
mary terminal adopted by the user to interact with the remote service. If such
a terminal is controlled by the adversary, currently-available user MFA schemes
cannot guarantee transactions mutual authentication, as they cannot reliably
verify remote server’s authenticity. The unavailability of the additional channel
is a typical situation, e.g., on a cruise ship offshore, or during an aircraft trip, to
name a few. In these scenarios, users and remote servers should establish Strong
Mutual Authentication without a dedicated channel to the secondary devices,
allowing an untrusted terminal to route messages to/from general-purpose addi-
tional authentication terminals. To the best of our knowledge, such a challenging
scenario has not been addressed, yet.

Contribution. In this paper, we present FRACTAL, an efficient solution to
enforce single-channel transaction MFA even when the main terminal is compro-
mised. FRACTAL is a flexible scheme, where several user devices (e.g., general-
purpose or Internet of Things (IoT) ones) can be used to demonstrate the au-
thenticity of an online transaction, although the primary authentication terminal
used to trigger the transaction could be compromised. Moreover, FRACTAL re-
quires very limited effort by the user, which is required only to identify its own
transaction. We discuss the security features of FRACTAL, and we prove its
security via the verification tool ProVerif. Moreover, we implemented a func-
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tioning prototype of FRACTAL proving that, using FRACTAL, it is possible to
successfully perform an online transaction in 2 seconds on average, while adding
multiple devices only slightly affects its performance.

We believe that FRACTAL may be useful in several application scenarios—a
witness, is the FRACTAL supporting patent [7], that inspired this paper.

Roadmap. This paper is organized as follows. Sec. 2 introduces the scenario
and the adversary model, Sec. 3 illustrates FRACTAL, Sec. 4 discusses the se-
curity of FRACTAL, Sec. 5 includes the performance evaluation of FRACTAL,
Sec. 6 reviews the related work, and, finally, Sec. 7 tightens the conclusions.

2 Scenario and Adversary Model

2.1 Scenario

We assume an end-user, namely A, want to access via a regular Internet con-
nection her savings account at the bank B. A and B are equipped with a pri-
vate/public key pair, and their connection is secured via the well-known Trans-
port Layer Security (TLS) protocol, e.g., leveraging public-key certificates. We
assume that A uses a Primary Authentication Terminal (PAT) to interact with
the bank B. The Primary Authentication Terminal (PAT) can be either a fixed
workstation or a laptop. We do not assume the presence of any particular addi-
tional interface on the PAT (e.g., biometrics).

We assume that the server of B, i.e., the remote server, requires MFA to au-
thorize any operation. To this aim, A has to register with B multiple Additional
Authentication Terminals. The Additional Authentication Terminals (AATs)
can be any general-purpose device in possession of A, that she can leverage
to demonstrate her identity at the authentication time. Note that A registers
the AATs at the join with B, and they can be added/modified through secure
channels. During the registration phase, the bank B stores securely its public
key and public key certificate on each AAT, to avoid any possible tampering.

Finally, we assume that the AATs could not be connected to the Internet,
thus being not able to communicate directly with B. This is a frequent situation,
occurring when the end-user is in a remote location. For instance, when A is on
a cruise ship, usually only the PAT is connected to the Internet, while any other
AAT would require additional subscriptions. Another use-case would be the use
of a shared on-demand terminal, that is owned by the user but rented on request.

2.2 Adversarial Model

The adversary assumed in this work, namely ADV , is in full control of the PAT.
We neglect the specific tool used by the attacker to compromise the PAT, as
the PAT could be either colluding with the adversary or deployed by ADV on
purpose. Overall, this assumption empowers ADV , enabling him to carry out
both passive and active attacks from the PAT. As a passive attacker, ADV is
a global eavesdropper, able to detect any packet transmitted and received by
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the PAT. As an active attacker, ADV features active attacking capabilities, in
line with the well-known Dolev-Yao attacker model [8]. Thus, ADV can inject
its own messages on the channel, either by replaying eavesdropped messages or
by forging new messages, impersonate either the PAT or the server, as well as
perform Man In The Middle (MITM) attacks against every involved party. In
addition, by having complete control of the PAT, ADV can tamper with the copy
of the key and the public key certificate of the server stored on the PAT, e.g.,
by replacing them with one of his choices. Moreover, in our paper, we assume
that at least one AAT is not compromised by the adversary.

One of the possible goals of the attacker is to steal money from A, held in her
account on B. To this aim, relying on the compromised PAT, ADV can launch
either synchronous or asynchronous MITM attacks.

In the former scenario, ADV waits for the end-user to perform a transaction.
At that time, ADV launches a MITM attack and redirects any request performed
by the client to a malicious server, interacting with the remote server on behalf
of A. In the latter case, ADV launches the attack without waiting for actions
performed by the end-user.

3 Protocol Description

3.1 Basic Protocol Flow

Fig. 1 describes the initial steps required by FRACTAL. Note that the operations
described in this section are always executed, and they do not depend on the
particular scenario where the protocol is operated.

4. Send [dst, amount]

2. Connect

1. Request to contact 
remote server

8. Show [dst, amount]

Multiple Signature Verification

7. verify(δ, pkB)

3. Mutual Authentication

5. γ = [dst, amount, ts, ҧ𝑐 = E(c, pkA,2)]
δ = sign(γ, skB)

6. Send γ, δ

Fig. 1. Initial protocol flow of FRACTAL.

1. The end-user first instructs the PAT to initiate a connection with the remote
server. Typically, this operation occurs through the typing of a Uniform
Resource Locator (URL) in the browser.
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2. The PAT sends a connection request to the public IP address of the remote
server, on behalf of the end-user. Note that, if the PAT is compromised, the
request can be redirected first to the IP address of the attacker, to be then
re-routed to the server—e.g., the attacker carries out a MITM.

3. The PAT and the remote server carry out mutual authentication, to verify
each other identities. Any mutual authentication protocol can be used here
(the prototype described in Sec. 5.1 uses TLS with X.509 certificates).

4. Through the PAT, the end-user specifies the details of the desired banking
transaction. This interaction typically happens through the keyboard, and
involves the specification of the transaction recipient dst, and the amount to
be transferred, amount.

5. Assume A registered a single AAT with the bank (N=1). Let skA,2 and
pkA,2 be the private/public key pair of the AAT. On the reception of the
transaction details from the PAT, the remote server generates a one-time
code c. The code c is encrypted using the public key of the registered AAT
pkA,2, generating an encrypted code c̃, as in Eq. 1.

c̃ = E (c, pkA,2) , (1)

where the operator E (m,K) refers to the public-key encryption of the plain-
text m using the public key K. When N AATs are registered, N encrypted
codes are generated according to Eq. 1. Then, the remote server creates a
public-key signature of the transaction, namely δ, as in Eq. 2.

δ = sign ([dst, amount, ts, c̃] , skB) , (2)

where ts refers to the expiration time of the transactions, and sign is a
generic public-key signature algorithm.

6. The information about the recipient of the transaction, the amount, the
timestamp, and the signature δ are delivered back to the PAT.

7. At reception time, the PAT first verifies the authenticity of the signature δ,
as per Eq. 3, by using the public key of the remote server pkB.

verify ([dst, amount, ts, c̃] , pkB)
?
= γ, (3)

where verify (·) is a signature verification algorithm. Note that the PAT can
verify only the authenticity of δ. Instead, it cannot verify autonomously the
content of c̃, but it has to rely on the assistance of the AAT(s).

8. As a first verification step, the recipient and the amount involved in the
transaction are showed to the end-user. Thus, the end-user can immediately
realize if the intended recipient and amount match the ones showed by the
PAT. However, when the PAT is compromised, this verification step is not
enough to ensure transaction authenticity. Therefore, additional validation
steps are performed with the assistance of the AAT(s).

The above-discussed steps are common to all the scenarios assumed in our
work. The following operations, instead, depend on the scenario and capabilities
of the involved terminals. We hereby consider two reference scenarios, where
the AATs are equipped either with a Bluetooth channel (3.2), or with a camera
(3.3), being these the most diffused interfaces in general-purposes devices.
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3.2 Scenario #1

In this scenario, we assume the PAT is connected to the AATs via Bluetooth. In
line with Sec. 2, we assume that the AAT(s) do not have Internet connection.
Fig. 2 shows the additional interactions required by FRACTAL, described below.

5. Feedback about the correctness of information

8. Deliver λ, δ

7. Deliver λ

4. Show [dst, amount, ts, 𝑐]

1. Deliver γ, δ

Sce
n

ario
 1

2. verify(δ, pkB)

3. 𝑐 = D( ҧ𝑐, skA,2)

c
y

c

6. λ = sign([𝑐, dst, amount], pkB)

Success

Fig. 2. Additional interactions required by FRACTAL in the Scenario #2.

1. Assuming the pairing between the PAT and the AAT has been already per-
formed. The PAT delivers to the AAT all the information received from the
remote server, including the transaction recipient, the amount, the validity
time, the encrypted code, and the signature δ.

2. First, the AAT verifies the signature δ (2b), via the check in Eq. 3.
3. Then, using its private key skA,2, the AAT extracts c, as per Eq. 4.

c = D (c̃, skA,2) , (4)

4. The available information, i.e., the transaction recipient, amount, and valid-
ity time are visually shown to the user, e.g., via a screen, so that she can
verify their consistency. If the end-user verifies the correctness of the infor-
mation and the AAT supports an input method, the end-user can specify
her final approval, by pressing a dedicated button. Otherwise, the end-user
rejects the transaction.

5. If A validates the transaction, the AAT signs all the information using the
public key of the remote server, generating a signature λ. The value λ is then
delivered to the PAT.

6. The PAT forwards to the remote server λ and δ.
7. At reception time, the remote server checks the correctness of λ, using its

private key. If the code just received matches the locally-stored one for the
particular transaction, identified by its signature δ. If the correspondence is
verified, the transaction is executed. Otherwise, the transaction is aborted.
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3.3 Scenario #2

In this scenario, we assume the AAT(s) does not feature any means to connect
with a remote PAT. Despite this is a quite restrictive assumption (usually, at
least one connection mode is available), it helps modelling a scenario where the
PAT and the AAT are theoretically incompatible. The only assumption on the
AAT is that it includes a camera and an application that can process QR codes.
Fig. 3 shows the additional interactions required by FRACTAL, described below.

6. Type 𝑐

7. Deliver 𝑐, δ

5. Show [dst, amount, ts , 𝑐]

Sce
n

ario
 2

c
y

c

1. Encoding γ, δ in QR

2.

3. D(δ, pkB)

4. 𝑐 = D( ҧ𝑐, skA,2)

3b. Integrity check

y
Success

Fig. 3. Additional Interactions required by FRACTAL in the Scenario #2.

1. The PAT creates a QR code, encoding the information received from the
remote server, i.e., the transaction recipient, the amount, the time validity,
c̃, and δ, and it shows the QR code on the screen.

2. A uses the camera on the AAT to acquire the QR code.

3. The processing of the QR code includes two main steps. First, the AAT
validates δ (3b), through Eq. 3. Then, the AAT extracts c, as per Eq. 4 (2b).

4. The available information, i.e., the transaction recipient, amount, and valid-
ity time are visually shown to the user, e.g., via a screen, so that she can
verify their consistency.

5. If the end-user verifies the correctness of the information, the end-user can
proceed with the transaction by entering the one-time code c to the PAT.
Otherwise, the end-user rejects the transaction.

6. In case A typed the code c, the PAT forwards to the remote server c and δ.

7. At reception time, the remote server checks if c matches the locally-stored
one for the particular transaction, identified by its signature δ. If it matches,
the transaction is executed. Otherwise, the transaction is aborted.

7



4 Security Considerations

4.1 Security Features

Overall, FRACTAL provides the following security features.
Protection Against Replay Attacks. FRACTAL is robust against replay attacks
thanks to the support of nonces and expiration timestamps. Indeed, the signature
of the transaction (δ) delivered to the PAT and the AATs includes a one-time
code, c, and a timestamp, indicating the transaction expiration time. Thus, any
replay after the expiration time is immediately identified and rejected. At the
same time, if the adversary replays the transaction before the expiration time,
being the code c one-time, the transaction is rejected, as well.
Protection Against MITM Attacks. Thanks to standard mutual authentication,
FRACTAL protects against external MITM attacks, launched by adversaries not
in control of the legitimate entities. An additional feature of FRACTAL is the
capability to reject MITM attacks even when the PAT is compromised. Indeed,
through FRACTAL, the end-user can always detect the mismatch between the
provided information and the (supposedly authenticated) one received by the
remote server. We prove such property in the following Theorem 1.

Theorem 1. Assume that the attacker ADV compromises the PAT. Then, un-
der the security assumptions in Sec. 2.2, ADV is prevented from misleading the
user and the remote server about the authenticity of a forged transaction.

Proof. Assume that ADV selects dst′ and amount′ as the forged transaction
recipient and amount. Controlling the PAT, ADV can obtain from the remote
server an authentic signature δ′ = sign

[
dst′||amount′||ts||c̃′, skB

]
, where c̃′ =

E [c′, pkA,2]. Now, the attacker has three options. The first one is to send to the
AAT the legitimate values dst and amount, together with the forged signature
δ′. In this case, the signature verification on the AAT, reported in Eq. 3, fails.
Thus, the attack would be rejected.
The second option consists in delivering to the AAT dst′, amount′, and δ′. In
this case, being δ′ generated from dst′ and amount′, the check in Eq. 3 would
be successful. However, the end-user can notice that dst 6= dst′ and amount 6=
amount′, thus detecting the attack and rejecting the transaction.
The third option is to report to the AAT the legitimate transaction values, i.e.,
amount, dst, and δ, but to report to the remote server the code for the legitimate
transaction and the signature of the forged transaction (i.e., c, δ′). Being δ
generated from both dst and amount′, the check in Eq. 3 would be successful.
Thus, the AAT would generate the code c and it would report c to the PAT.
Then, the PAT could report to the remote server δ′, mimicking an approval of
the end-user on the forged transaction. However, being the relationship between
the one-time-code and the transaction unique, the remote server could easily
verify that both δ 6= δ′ and c 6= c′, denying the execution of the transaction.

Note that the considerations above apply also with asynchronous attacks, as
the AAT would pop up an unsolicited notification to the end-user. Thus, the
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end-user could easily realize the ongoing attack. That is, having the human in
the loop is instrumental to the security of FRACTAL, reverting the saying that
the human is the weakest link in the security chain.

In summary, the PAT has no control over the messages it routes from the
remote server to the AATs. Therefore, ADV cannot modify such messages in a
way to achieve its objectives. We formally verify this property in 4.2 via ProVerif.

4.2 Formal Security Analysis via ProVerif

We formally verified the security properties of FRACTAL using the automatic
tool ProVerif [9], in line with many recent scientific contributions [10], [11], and
we also released the source code at [12], to allow interested readers to reproduce
our results and verify our claims. The logic of ProVerif is rooted on two main as-
sumptions. First, the cryptographic primitives used within the security protocol
are inherently robust. Second, the attacker is consistent with the widely-accepted
Dolev-Yao model, having the capability to read, inject, delete, and modify all
the messages exchanged on the communication channel. Based on the above
assumptions and user-specified security objectives, ProVerif enables the formal
analysis of secrecy and authentication properties [9].

We implemented FRACTAL in ProVerif to verify that, even when the PAT
is controlled by ADV , the remote server could always discriminate forged and
legitimate transactions. We implemented the flow of FRACTAL in Scenario #1,
and we modeled the end-user through a simple process, verifying that the values
possessed by the AAT are the same typed to the PAT. We also assumed that
the mutual authentication step represented in Fig. 1 has been already executed,
and that the result of such a process is a session key TLSKey, shared between
the PAT and the remote server. Finally, to model the tampering of the PAT, we
leaked the session key TLSKey to the adversary, enabling PAT impersonation.

With reference to our security properties, ProVerif provides the output not
attacker(elem[]) is true when the attacker does not know the value of elem, while
the output not attacker(elem[]) is false is provided if the attacker knows the value
of elem. Moreover, the output inj-event(last event ()) ==> inj-event(previous event
()) is true means that the function last event is executed only when another func-
tion, namely previous event is executed. Thus, as per the logic of the ProVerif
tool, we defined two main events:

– begin EndUser(x 1,x 2), indicating that the End-User initiates a transaction
specifying the values x1 and x2;

– end RS(x 1,x 2), indicating that the remote server completes a transaction
with the values x1 and x2.

Fig. 4 shows the excerpt of the output of ProVerif, when executed locally
(recall that the source code is available at [12]).

The first query verifies that the session key TLSKey is known to ADV . As
mentioned above, this condition models the tampering of the PAT. The second
query verifies that the event end RS(x 1,x 2), occurring when the remote server
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Veri�cation summary:
Query not attacker(TLSKey[]) is false.

Query inj− event(end RS(x1, x2)) ==> inj− event(begin EndUser(x1, x2)) is

true.

Fig. 4. Excerpt of the output provided by the ProVerif tool.

completes a transaction with the values x1 and x2, happens if and only if the
event begin EndUser(x 1,x 2) has previously occurred. In turn, this means that
the server completes a transaction with the end-user only when the end-user
really initiated that transaction. Overall, the positive outcome of this query
verifies that, thanks to FRACTAL, the remote server can always verify the end-
user, even when the PAT is compromised.

5 Implementation and Performance Assessment

5.1 Implementation Details

We implemented FRACTAL in Java, using Spring [13]. Spring is an open-source
application framework, containing a set of core features that can be used by
any Java application. It also includes several extensions, that allow to build web
applications on top of the Java Enterprise Edition (EE) platform. To allow type
inference, conciseness, and inter-operation with mobile applications, we used
the Kotlin programming language [14]. We rely on the non-relational database
MongoDB to store transactions and the related details [15]. To efficiently manage
cryptographic keys and X.509 certificates, we use keytool [16], while we used the
ZXing library for barcode image processing [17]. Finally, we implemented the
app running on the AATs using the AndroidStudio IDE [18].

We implemented the PAT and the remote server as standalone JAVA web
applications on a dedicated machine, i.e., an Intel Core i7-3632QM, equipped
with a CPU running at 2.20 GHz, 8.00 GB of RAM, and the Windows 10 Oper-
ating System (OS). Using a dedicated web application for the PAT, the user can
login and insert the transaction details on a web page, and then the web app
manages the interactions with the remote server. This approach allows separat-
ing the entities involved in the system, while introducing a negligible interaction
delay. For the AAT, we used a Xiaomi Mi A3 smartphone, running the Android
10 OS. Finally, our protype uses the SHA-256 hashing algorithm and the RSA-
2048 public key signature scheme. As a reference example, in Figures 8 and 9
(included in Annex 7), we report the screen shown to the end-user on the AAT
and the PAT to validate the transaction, respectively. The web application of
the PAT requires 1, 342 MB of RAM, while the apk of the app is 3, 259 KB for
the Scenario #1 and 4, 142 KB for the Scenario #2.

10



5.2 Experimental Performance Assessment

For our experimental evaluation, we adopted a methodology inspired by the re-
cent contribution in [19]. Specifically, the PAT, the AATs, and the remote server
of our first scenario have been physically implemented in the same machine, thus
being directly-connected to each other. However, we modeled a realistic deploy-
ment of the remote server in a random point of the World at the communication
level, by introducing additional delays in the interaction between the PAT and
the remote server. These additional latencies have been modeled by considering
real end-to-end communication delays incurred between two real endpoints con-
nected to the Internet. In detail, we identified ten (10) geographically distributed
hosts publicly accessible through the Internet via their IP addresses, listed in
Tab. 1. Then, we launched a set of 10, 000 ICMP Echo Requests to IP addresses

Table 1. Details of the hosts used for the modeling of a remote server.

ID IP Address Nation Location

S1 39.32.0.1 Pakistan Islamabad

S2 8.8.8.8 USA Mountain View

S3 76.74.224.13 Canada Vancouver

S4 61.69.229.154 Australia Sydney

S5 193.70.52.72 France Paris

S6 167.71.129.73 England London

S7 80.116.252.221 Italy Rome

S8 202.46.34.59 China Shenzhen

S9 125.30.18.121 Japan Tokyo

S10 139.59.140.10 Germany Frankfurt

in Tab. 1 from an endpoint located in Doha, Qatar. Finally, we measured the
Round Trip Time (RTT) values of the ICMP Echo Requests, as the difference
between the time when the request is sent and the time when the corresponding
ICMP Echo Reply is received. Then, the RTTs have been statistically modeled
through an empirical Cumulative Distribution Function (CDF), shown in Fig. 5,
and these curves have been used to model the time required to contact a specific
remote server. Specifically, for each experiment, we located the remote server in
one of the identified hosts, and we modeled the corresponding communication
delay by extracting a random sample from the empirical CDF of this host in
Fig. 5. Assuming a single AAT, the results of our investigation are reported in
Fig. 6, along with the 95% confidence interval.

Note that the location of the remote server has a slight impact on the laten-
cies. The highest (average) delay is observed for S10, located in Germany, with
a mean value of the delay of 2.262 s. Overall, we can notice that the transac-
tion can be completed in a limited time, not impacting on the usability of the
solution, while guaranteeing high level of security.

To provide further insights, we also evaluated the time to complete a trans-
action, increasing the AATs. As a reference, we assumed a scenario consistent
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Fig. 5. CDF of the RTTs measured for 10 geographically-distributed hosts.

Fig. 6. Time to complete FRACTAL, with single AAT and single remote server located
in Mountain View (S2), neglecting the time to input the code.
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with the Scenario #1, where the AATs are connected to the PAT via Bluetooth,
with the PAT being the hub of a logical star network topology. The results are
provided in Fig. 7, along with the 95% confidence interval over 100 tests.

Fig. 7. Time required to complete FRACTAL, with multiple AATs directly connected
to the PAT via Bluetooth.

As the number of AATs increases, the delay does not increase. Indeed, due
to the non deterministic nature of devices interactions, when 3 and 4 AATs are
connected, the average delay is less than what experienced for 1 and 2 AATs.
Even in the worst case (5 AATs), the transaction can be completed in only
4.035 s, keeping the delay manageable. We remark that this computation delay
does not consider the time for the user to input on the PAT.

6 Related Work and Qualitative Comparison

The majority of MFA systems in the literature focus on user/client MFA, us-
ing biometric factors to enforce client authentication. For instance, the authors
in [20], proposed a two-phase authentication mechanism for federated identity
management systems. Unfortunately, the reliance on biometrics prevents the use
of legacy devices, not equipped with modules able to gather user biometric fea-
tures. In [21], the authors addressed the problem of outsourcing the biometric
features of users to untrusted servers, by designing a MFA scheme where the
biometric features of users remain on their devices. Relying on biometric in-
formation, older devices are out of the equation as well. In [22], the authors
introduced a zero-effort MFA system, requiring a smartphone and a smartwatch
(replaceable by a smart bracelet) able to capture the gait patterns of an individ-
ual, her mid/lower body movements, and her wrist/arm movements. Given the
alleged uniqueness of the combination of these patterns, only the account holder
should be able to authenticate. Relying on specific sensors able to capture users’
gait, the scheme is unusable in many contexts.
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The authors in [23] introduced graphical passwords as new means for MFA.
They proposed different architectures where such MFA could be employed, and
they demonstrated the enhanced usability of their tool. However, their scheme
relies on the delivery of SMS via out-of-band channels, not being usable when
this is not available. A similar limitation can be found also in in [24]. The authors
in [25] introduced a MFA technique specifically tailored to fragile communica-
tions. They contextualized the protocol in a smart grid scenario, where the user
interacts with an Intelligent Electronic Device (IED) to perform the authenti-
cation. The interaction of users with online banking systems has been studied
also by [26], where the authors proposed a MFA scheme without using addi-
tional devices to prove the identity of the user. However, the adversary models
considered here do not assume tampering of the PAT. In a document released
by the Federal Financial Institutions Examination Council [27], the authors em-
brace the new legal and technological changes with respect to the protection
of customer information. However, this document only took into account the
customer authentication, thus giving the banks’ one for granted. Thus, under
the assumption of a possible compromise of the PAT by an attacker, the mutual
authentication feature could be easily disrupted. Note that many commercial so-
lutions addresses two-factor and multi-factor authentication, based on the FIDO
Alliance Specifications. An example is YubiKey, using Security Keys, i.e., hard-
ware devices that authenticate the user after the user presses a button on the
security key [28]. Requiring dedicated devices, such solutions are not applicable
here. Finally, note that standard security protocols such as Extensible Authenti-
cation Protocol (EAP) cannot be used directly to solve our problem, since they
all assume that the PAT is not compromised. We summarized the above discus-

Table 2. Qualitative comparison of FRACTAL against competing solutions.

Ref.
Single

Channel
No Dedicated

Devices as AATs
No Biometric

Interfaces Required
Robust against PAT

Tampering

[20] 3 7 7 3

[23] 7 3 3 3

[25] 3 7 7 3

[21] 7 7 7 3

[26] 3 Not Applicable Not Applicable 7

[29] 7 3 7 3

[22] 3 7 7 3

[24] 7 3 7 3

FRACTAL 3 3 3 3

sion in Tab. 2. Note that all the schemes based on single-channel authentication
are not effective when the the PAT is compromised. Moreover, they often require
biometric interfaces on the supporting devices. Conversely, FRACTAL leverages
a single communication channel, and it is robust also when the PAT is compro-
mised. Besides, FRACTAL does not require additional dedicated interfaces on
the supporting devices.
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7 Conclusion

In this paper, we have presented FRACTAL, a flexible Multi-Factor Authenti-
cation scheme for securing banking transactions. FRACTAL uses a single com-
munication channel shared between the bank servers and the Primary Authen-
tication Terminal to provide security to the transaction, even if the Primary
Authentication Terminal is compromised. The solution does not require any spe-
cialized hardware: it involves only (CoTS) Additional Authentication Terminals
(AAT)—e.g. mobile phone, smart watch.
We discussed the security features of FRACTAL, and we proved its security
using ProVerif. We also implemented it in a real client-server scenario, using
Spring micro-services. Our experimental campaign demonstrated that, using a
single AAT, independently from the remote server location, the transaction can
be completed in about 2 seconds, while additional AATs can be added with just
a slight impact on the end-to-end delay.
In addition to its striking security properties, we believe that our solution could
also play a key role in overcoming the need for dedicated devices currently used
by banks for MFA, and to reduce the need for separate out-of-band channels. Fi-
nally, the applicability of FRACTAL goes beyond the presented use-case, extend-
ing to other domains where additional communication channels are not available
and dedicated devices are not suitable.
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Annex A

Fig. 8. Screen shown on the AAT to validate the transaction. A can verify that the
details of the intended transaction match the ones on the screen. Then, in case of
Scenario #1, A can validate the transaction by pressing con�rm. In case of Scenario
#2, A can insert the code on the PAT to verify the transaction (see Figure 9.)

Fig. 9. Screen shown on the PAT to validate the transaction in case of Scenario #2. If
the details of the transaction shown on the AAT match the intended ones, A can insert
the code in the passcode field and press the con�rm button to validate the transaction.
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