
Mitigating Energy Depletion Attacks in IoT via
Random Time-Slotted Channel Access

Savio Sciancalepore∗, Pietro Tedeschi†, Usman Riasat†, Roberto Di Pietro†
∗Eindhoven University of Technology, Eindhoven, Netherlands

s.sciancalepore@tue.nl
†Division of Information and Computing Technology (ICT)

College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Doha, Qatar
{ptedeschi, uriasat, rdipietro}@hbku.edu.qa

Abstract—Energy depletion attacks represent a challenging
threat towards the secure and reliable deployment of low-power
Internet of Things (IoT) networks. Indeed, by simply transmitting
canning standard-compliant packets to a target IoT device, an
adversary can quickly exhaust target devices’ available energy
and reduce network lifetime, leading to extensive Denial-of-
Service (DoS). Current solutions to tackle energy depletion attacks
mainly rely on ex-post detection of the attack and the adoption
of follow-up countermeasures. Still, the cited approaches cannot
prevent external adversaries from sending wireless packets to
target devices and draining down their energy budget.

In this paper, we present RTSCA, a novel countermeasure to
energy depletion attacks in IoT networks, that leverages Random
Time-Slotted Channel Access. RTSCA randomizes channel access
operations executed by a couple of directly-connected IoT devices
operating through the IEEE 802.15.4 MAC, significantly reducing
the time window of opportunity for the attacker, with little-to-none
energy cost on legitimate IoT devices. RTSCA also includes a de-
tection mechanism targeted to the recently-introduced Truncate-
after-Preamble (TaP) energy depletion attacks, that leverages
the observation of error patterns in the received packets. We
carried out an extensive performance assessment campaign on
real Openmote-b IoT nodes, showing that RTSCA forces the
adversary to behave as a (sub-optimal) reactive jammer to achieve
energy depletion attacks. In such a setting, the adversary has to
spend between 42.5% and 55% more energy to carry out the
attack, while at the same time having no deterministic chances
of success.

Index Terms—IoT Security; Energy Depletion Attacks; IEEE
802.15.4; Random Time-Slotted Channel Access.

I. INTRODUCTION

The weak security and privacy protection mechanisms of-
fered by the first generation of Internet of Things (IoT)
products and platforms motivated extensive scientific literature,
as well as the design of innovative security solutions tailored
to the hardware and software constraints of IoT devices [1].

Although security protocols and suites for IoT have nowa-
days significantly evolved, energy depletion attacks remain a
hard-to-face threat, especially in Low Power Networks (LPW)
based on the latest IEEE 802.15.4 specification [2]. Energy
depletion attacks aim at exhausting IoT devices’ batteries, by
maliciously triggering the target nodes to execute standard-
compliant but energy-consuming operations [3]. Despite such
attacks can be contextualized to any layer of the protocol stack,

preventing their launch at the Physical (PHY) and Medium
Access Control (MAC) layer is particularly challenging. In-
deed, the adversary simply needs to deliver protocol-abiding
packets to the target node and let it process (and eventually dis-
card) such packets, according to standard protocol operations.
Given that radio and security procedures are the most energy-
consuming activities for an IoT device, causing their regular
execution leads to energy drain, rapidly exhausting devices’
battery and shortening network lifetime [4].

As demonstrated by recent scientific contributions, such
as the Ghost attack presented in [5] and the Truncate-after-
Preamble (TaP) attack introduced by [6], an adversary can
launch energy depletion attacks stealthily and efficiently (i.e.,
incurring a low energy cost), by manipulating the security fields
or the PHY header of an IEEE 802.15.4 packet.

Current solutions conceived to mitigate general-purpose and
technology-agnostic energy depletion attacks are all based
on attack detection. Indeed, energy depletion attacks require
several rounds to attain a noticeable level of energy exhaustion,
and their timely detection by the target can limit the energy
drain. However, current solutions cannot prevent an external
adversary from launching continuous energy depletion attacks.
Indeed, they all expose to the adversary the radio access
patterns of the legitimate devices, an information that can
be exploited by the adversary to mount a sustained energy
depletion attack.

Contribution. In this paper, we present RTSCA, a novel and
efficient solution to prevent energy depletion attacks in LPW
networks based on the IEEE 802.15.4 PHY/MAC. RTSCA
requires little-to-none additional energy cost on legitimate IoT
devices. At the same time, RTSCA prevents energy depletion
attacks launched by external adversaries by randomizing the
time when a device listens to the wireless channel for incoming
packets, so not exposing to the adversary the radio access
patterns. Furthermore, RTSCA provides a novel pure-software
strategy that detects and mitigates the impact of recently-
disclosed TaP energy depletion attacks, based on the analysis
of error patterns within received packets.

Our experimental performance assessment carried out on
real Openmote-b IoT devices shows that RTSCA reduces the



effectiveness of current energy depletion attacks to at least
10.8% of their nominal effectiveness. Such value can be
improved at will by the IoT devices by increasing the time
duration of the IEEE 802.15.4 slot, trading off such gain
with a slight reduction of the network throughput. We also
show that, to have chances of depleting the devices’ energy,
the adversary has to deploy a (sub-optimal) reactive jammer,
increasing the required energy consumption by a 42.5 − 55%
range, in broadcast and unicast scenarios, respectively, hence
incurring a significantly reduction in efficiency, stealthiness,
and effectiveness.

To the best of our knowledge, we are the first ones to point
out and to demonstrate that solutions like RTSCA, traditionally
conceived to avoid random spot jamming, can be adapted and
re-used to efficiently and effectively prevent PHY/MAC energy
depletion attacks, with little-to-none additional cost on energy-
constrained IoT devices.

Roadmap. The rest of the paper is organized as follows.
Section II reviews related work, Section III introduces the
system and the adversary models, Section IV introduces the
attacks tackled in our paper, Section V illustrates RTSCA,
Section VI provides the assessment of the proposed approach
and, finally, Section VII tightens conclusions.

II. RELATED WORK

A few works recently investigated energy depletion attacks
and related countermeasures in IoT networks based on the
IEEE 802.15.4-2015 PHY/MAC (see [2] for a comprehensive
overview). In this context, the Ghost attack presented in [5]
showed that an adversary could transmit replayed secure pack-
ets to a target, in a way to induce it into executing energy-
consuming AES decryption operations, quickly exhausting its
energy. In the same paper, the authors highlighted a few
potential countermeasures, based on the localization of the
adversary via the Cluster Heads (CHs) of the network and the
spread of such information through dedicated protocols to all
the nodes in the network. However, the cited countermeasures
do not prevent energy depletion, but only detect the attack after
suffering the injecting of a few bogus packets.

The authors in [7] focused on the Coordinated Sampled
Listening (CSL) operation mode of the IEEE 802.15.4 MAC
and Denial-of-Sleep attacks, specific to this operation mode.
This class of attacks leverages optional security of the wake-
up phase of the CSL to let the target spend more time in the
energy-consuming RX mode, thus draining its energy quicker.
The countermeasures deployed to face such attacks are specific
to the CSL mode of IEEE 802.15.4, and hardly generalize to
any MAC based on IEEE 802.15.4.

Some flavours of jamming attacks are generally considered
a form of energy depletion for LPW [8]. Specifically, deceptive
and reactive jamming attacks lead a target to receive and
process a standard-compliant packet [9], emerging as a form of
energy depletion. While current solutions mainly look at ways
to achieve information transfer under jamming attacks, solu-
tions to face jamming from the energy depletion perspective
mostly fall in the jamming detection area, e.g., [10]. However,

they cannot be generalized to detect and face any PHY/MAC
energy depletion attack.

The authors in [6] further decreased the energy necessary by
an adversary to launch energy depletion attacks. They proposed
delivering a packet containing only the PHY header, letting
an IoT node receive a packet of the Maximum Transmission
Unit (MTU) size. As explained in this paper, such attacks can
be detected efficiently, and necessitate the knowledge of the
reception time(s) on the target to be successful.

Our solution emerges as a horizontal strategy compared
to the cited works, preventing any external adversary from
injecting bogus packets into the network. On the one hand,
our countermeasure significantly mitigates external energy
depletion attacks, as it hides the time when a device can
receive a packet. On the other hand, the previously-mentioned
strategies can be combined with the proposed approach, further
enhancing the protection of an LPW against stealthy energy
depletion attacks.

Finally, note that energy depletion attacks are not limited to
PHY and MAC layers, but they can target also routing and
application layers (see, e.g., the vampire attack investigated
in [11]). To face such attacks, specific protocol-based counter-
measures should be conceived, with a limited impact on the
behaviour of the lowest layers of the protocol stack.

III. SYSTEM AND ADVERSARY MODEL

This section introduces the system model and the adversarial
model considered in our manuscript. Specifically, Section III-A
depicts the scenario, while Section III-B describes the features
and objective of the adversary.

A. System Model

The scenario assumed in this work is depicted in Figure 1.

Fig. 1. Scenario assumed in this work.

We consider an LPW IoT network made up of N nodes,
namely s1, s2, . . . , sN , wirelessly connected to each other in
a full-mesh topology. We assume that the IoT nodes use the
widespread IEEE 802.15.4 PHY/MAC layer to orchestrate
the access to the physical communication medium and ex-
change radio packets [12]. We do not make any additional
assumption about the protocol stack of the IoT nodes, so
as to consider the worst case of nodes connected to each
other only at the MAC layer (the reason for this conservative
assumption will become clear when we discuss the attack
detection strategy in Section V-C). In line with the latest IEEE
802.15.4 specifications, we assume that the IoT nodes can



transmit packets with a random MAC payload size, varying
from the minimum of PMIN = 28 bytes to the maximum of
PMAX = 127 bytes. Thanks to adopting the IEEE 802.15.4
MAC layer, we can safely assume that all the IoT nodes
are synchronized. Specifically, in line with the latest IEEE
802.15.4 specifications, we assume that time is divided into
time-slots, lasting a fixed amount of time T = 10 ms. We recall
that IEEE 802.15.4 is a deterministic MAC, meaning that any
event happening within the time-slot T occurs at a specific,
predictable time t ≤ T . IEEE 802.15.4 also guarantees that
any packet that a device needs to transmit gets transmitted
within the time-slot T . Note that a packet can be transmitted
on any of the 16 IEEE 802.15.4 channels, in the frequency
range [2, 405− 2, 480] Mhz [13].

We also assume that any couple of directly-connected IoT
nodes, e.g., s1 and s2, share a secret symmetric key, namely
K1,2. The specific way this secret is generated and installed in
the devices is out of the scope of our manuscript, and it can
be either pre-installed or dynamically obtained by the devices
through an interactive key agreement scheme [14], [15].

Finally, we assume that the IoT devices support the execution
of an hashing function, such as SHA-256, being supported
efficiently in hardware by many IoT devices [16].

B. Adversary Model

The adversary assumed in this work, namely A, features
both passive and active capabilities. On the one hand, A is
a global passive eavesdropper listening on the same wireless
communication channel(s) used by legitimate IoT devices.
Therefore, A can detect and decode any packet exchanged
by any couple of devices, independently from the specific
frequency and location of the devices. On the other hand, A
also features active capabilities, i.e., it can inject radio packets
on the wireless channel. In particular, as will be detailed in
Section IV, A can also craft special bogus packets, announcing
a packet length different from the real one, and aborting the
transmission at any time, before its expected conclusion. These
powerful capabilities identify A as a Software-Defined Radio
(SDR), able to change the standard behaviour of an IEEE
802.15.4 transceiver at the PHY layer.

We also assume that A is an energy-constrained adver-
sary, i.e., it has limited energy available. This assumption is
reasonable, especially when the adversary targets remote IoT
deployments, and needs to power up the SDR with an external
portable battery. The less energy the attack requires, the more
time the adversary can have its equipment fully powered,
increasing its chances to fully deplete the energy of the target
nodes before the exhaustion of its own energy budget.

Overall, the aim of the adversary A is to stealthily deplete
the energy of the legitimate IoT device as much and as quickly
as possible, while minimizing its energy expenditure. Further,
the adversary would also like be stealthy, that is, having
its presence not detected. Note that stealthiness is not an
additional feature of the assumed adversary, but a requirement
of any energy depletion attack. Indeed, to exhaust the energy of
a target device, the adversary should launch energy depletion

attacks in multiple rounds. Thus, avoiding detection on a per-
packet basis is the only way the adversary has to achieve
its objective—i.e., stealthiness prevents the target nodes from
adopting countermeasures.

Finally, note that this paper assumes an external adversary,
i.e., an adversary using a device external to (not part of) the
network. Carrying out the attacks described in this manuscript
through an internal adversary would require the IoT network to
natively support at least one SDR, which is unusual. Therefore,
the case of an internal adversary is intentionally left out of the
scope of this manuscript.

IV. ORCHESTRATING ENERGY DEPLETION ATTACKS

This section sheds lights on energy depletion attacks, includ-
ing the TaP attack described in [6], contextualizing them into
the system model above discussed. Energy depletion attacks
distinguish between a passive phase and an active phase,
described in Section IV-A and Section IV-B, respectively.

A. Passive Phase

In this phase, A understands the channel access patterns
of the target device(s) by observing the radio activities on
the wireless channel. Figure 2 reports a qualitative sequence
diagram of the legacy operations executed by a transmitting
and a receiving IoT device compliant to the IEEE 802.15.4
PHY/MAC to transfer a unicast data packet in a time-slot.

t

TX

RX

CPUTransmitter
Node

T = 10 ms

t

TX

RX

CPUReceiver
Node

Prepare
TX

TX 
Ramp 

Up
TX 

Data
Prepare
RX Ack

RX 
Ramp 

Up

RX 
Ack

Wait 
End Slot

Prepare
RX

RX 
Ramp 

Up

RX 
Data

Prepare
TX Ack

TX 
Ramp 

Up

TX 
Ack

Wait 
End Slot

Fig. 2. Operations executed by a transmitting and receiving IoT device
compliant to the IEEE 802.15.4 PHY/MAC to exchange a unicast packet, in
a default time-slot of T = 10 ms. If the packet is broadcast, both the devices
wait for the end of the slot after the reception of the data packet.

We notice that the Transmitter IoT node has a maximum
time to prepare the packet, defined as PREPARE TX. Then, at
a given (well-known) time, it instructs the radio to transmit
the packet. The radio takes a time TX RAMP UP to turn on
in TX Mode, and then transmits the packet for a maximum
time TX DATA, based on its size. Then, the transmitter turns
off the radio and stays silent for a time PREPARE RX ACK.
At a given (well-known) time, it instructs the radio to turn on
in RX mode, to receive the acknowledgement. The radio takes
a time RX RAMP UP to turn on in RX mode, and receives
the ack packet for a (fixed) time RX ACK. In the remaining



part of the slot, lasting for a time WAIT END SLOT, the nodes
turn off the radio to minimize its energy consumption. The
qualitative sequence diagram of the receiver node is the dual
of the transmitter.

Note that the specific time offsets within the qualitative
sequence diagram in Figure 2 are static, i.e., they do not change
slot-by-slot. The only parts that have a variable duration are
TX DATA and RX DATA, which takes a different time based on
the size of the payload, with a consequent shrink of the part at
the end of the slot, namely WAIT END SLOT. However, given
that the first byte of the whole packet (the PHY header) reports
the size of the packet, an external observer (e.g., A) can easily
acquire such information.

Based on the above considerations, in this phase, the adver-
sary A simply tunes its radio on the same communication chan-
nel used by the target device and records the timestamps of all
the packets (and corresponding acknowledgements) exchanged
between the target device and other IoT nodes in the network.
By observing only a few packets, A can easily synchronize
with the network and predict the expected transmission and
reception times of the target device. This knowledge is key
to the successful deployment of any energy depletion attack.
Indeed, it provides the adversary with the capability to guess
the (reduced) portion of time when the target has its radio active
in RX mode. Without such a knowledge, the adversary has a
significantly reduced chance of successfully injecting packets
into the target device.

B. Active Phase

In the active phase, leveraging the knowledge previously
acquired, the adversary A injects locally-generated packets to
induce the receiver to process them and waste energy.

In the case of a traditional energy depletion, A simply
injects its packet at the time instant where it expects the target
to have its radio on, anticipating and replacing the legitimate
one. In the case of TaP attacks, as discussed by the authors
in [6], A inserts specially-crafted packets. Specifically, IEEE
802.15.4 packets are logically divided into five parts: (i) the
preamble and Start of Frame Delimiter (SFD), indicating the
beginning of an IEEE 802.15.4 packet; (ii) the PHY header,
indicating the size of the packet, in bytes; (iii) the MAC header,
providing additional meta-data according to a well-defined
format; (iv) MAC payload, containing upper-layer data; and,
finally, (v) the MAC trailer, consisting of a Cyclic Redundancy
Check (CRC) allowing to verify the integrity of the packet.
Any receiver can detect an incoming IEEE 802.15.4 packets
through the detection of the preamble and the SFD, and then
reads the value of the PHY header to identify the time it needs
to have its radio on in RX mode, based on the packet size. As
shown in Figure 3, TaP attacks inject packets carrying a bogus
PHY header, i.e., an incorrect packet size.

Specifically, in the most effective configuration, the PHY
header of a TaP packet reports the value 127, i.e., the MTU of
an IEEE 802.15.4 packet. Then, the adversary simply truncates
the transmission. On the receiving side, the target IoT node
will spend time and energy receiving noise for the maximum

Fig. 3. Operation of the TaP attack.

possible time, and then it will discard the packet because of
an incorrect CRC.

Note that TaP attacks are particularly advantageous for an
energy-constrained adversary. Indeed, by transmitting only a
single data byte (the PHY header), the adversary causes the
target to have its radio on in RX mode for the time equivalent to
the transmission of 127 bytes, causing the maximum possible
disruption. Note that the adversary can stop the packet trans-
mission any time during the expected payload transmission,
not necessarily after the first byte. This feature will be helpful
to the adversary, as described later on in Section V, where we
will discuss the detection strategy included in RTSCA.

We recall that the authors in [6] discussed only the active
phase of the TaP attack, i.e., the creation and delivery of
the bogus packets, neglecting considerations about the prepa-
ration of the attack, i.e., the passive phase. Moreover, they
only described a specific configuration of the attack, i.e., the
transmission of a fixed payload of 10 bytes before aborting
transmission. In this work, among other contributions (cfr.
Contribution), we also extend the basic attack configuration,
providing more flexibility to the attack at the expense of a
slight increase in energy consumption.

V. MITIGATING ENERGY DEPLETION ATTACKS

This section describes the countermeasure conceived to mit-
igate energy depletion attacks, as well as a detection strategy
tailored to the unique features of the TaP attack. Section V-A
provides an overview of our defense strategy, while Sec-
tion V-B and Section V-C describe the countermeasure and
the detection strategy, respectively.

A. RTSCA in a Nutshell

The devised countermeasure, namely RTSCA, relies on
(pseudo-random) synchronized communications, i.e., a pseudo-
random time-slotted synchronized channel access. In brief,
each couple of directly-connected IoT devices uses a shared
secret to extract a shared delay, adopted to randomize (from
the adversarial point of view) radio activities, being it a packet
transmission or reception. The delay is extracted so that the
overall time required to transmit (receive) a packet and receive
(transmit) the corresponding acknowledgement does not exceed
the time-slot duration T .



On the one hand, RTSCA has no impact on the energy
consumption of the IoT devices and the determinism provided
by the IEEE 802.15.4 MAC. Indeed, the time the IoT devices
have their radio turned on (either in TX or in RX) is the
same as the standard one. Moreover, the devised strategy still
ensures that any packet is delivered to the receiver within the
maximum delay T . On the other hand, an external adversary,
not in possession of the shared secret, cannot deterministically
predict when any IoT device would turn its radio on in RX
mode, finding it hard to inject bogus packets. Note that this
countermeasure effectively mitigates energy depletion attacks
and apply to any run-time energy depletion attack.

RTSCA also includes a detection strategy specific to the TaP
attack. The detection is grounded on the observation that an
adversary carrying out a TaP attack has no control over the
bytes received by the target IoT device. Therefore, so received
packets have a different bytes error pattern than regular ones
caused by interference. In brief, instead of simply discarding a
packet with an erroneous CRC, an IoT device running RTSCA
processes the MAC header of an erroneous packet, and it
counts the number and the distribution of such incorrect fields,
i.e., the fields having an incoherent value. If such values exhibit
the pattern typical of a TaP attack, RTSCA raises the alarm for
TaP detection, compromising attack stealthiness. The following
subsections provide more details.

B. Preventing Energy Depletion Attacks

As previously summarized, RTSCA relies on randomized
time-slotted channel access, as depicted in Figure 4.

t

TX

RX

CPUTransmitter
Node

T = 10 ms

TX

RX

CPUReceiver
Node

Prepare
TX

TX 
Ramp 

Up

TX 
Data

Prepare
RX Ack

RX 
Ramp 

Up

RX 
Ack

Wait 
End Slot

TX
Data 
Delay

RX 
Ack 

Delay

t

Prepare
RX

RX 
Ramp 

Up

RX 
Data

Prepare
TX Ack

TX 
Ramp 

Up

TX 
Ack

Wait 
End Slot

RX
Data 
Delay

TX 
Ack 

Delay

Fig. 4. Operations executed by a Transmitter and Receiver IoT device in a
IEEE 802.15.4 time-slot integrating RTSCA.

In brief, RTSCA uses the time available at the end of a time-
slot, namely WAIT END SLOT, currently unused, to randomly
delay the radio operations, in a way to make them unpredictable
to an external observer.

On the transmitter, the IoT device first prepares the packet to
be transmitted (PREPARE TX). Then, instead of immediately
transmitting the packet, it extracts a slot-dependent delay. To
this aim, it executes the operation reported in Eq. 1.

l1,t = H [asn⊕K1,2] mod R, (1)

where H refers to an hashing algorithm (such as SHA-256),
asn is the current value of the Absolute Slot Number (ASN),
i.e., the ordinal number of the slot since the deployment of
the network, K1,2 is the key shared between the transmitter
and the receiver, mod refers to the modulo operator, ⊕
refers to the bitwise x-or operator, while R is the maximum
time available within the slot, corresponding to WAIT END
SLOT in Figure 2. Such a formulation, adopted in recent works
such as [17], provides confidentiality properties equivalent to
well-known symmetric encryption algorithms, at significantly
reduced computation cost. The time l1,t is the value of the TX
DATA DELAY in Figure 4. During this time, the transmitter
does not turn on the radio but stays idle, consuming reduced
energy (CPU only). At the expiration of the delay, the node
transmits the packet.

Both the key K1,2 and the current value of the asn are
known to the receiver, as the two nodes are synchronized
thanks to the implicit IEEE 802.15.4 synchronization mech-
anism. Therefore, the receiver can also compute the value TX
DATA DELAY, and avoid turning on the radio in advance.
At the time TX DATA DELAY - 1, the receiver turns on the
radio and receives the packet. Then, if the received packet
requires an acknowledgement (unicast packet), it prepares the
ack. Similarly to the previous behavior, it extracts a new delay,
namely TX ACK DELAY, as in Eq. 2.

l2,t = H [asn⊕ (K1,2 + 1)] mod (R− l1,t) , (2)

where asn has the same value as in Eq. 1, while l1,t refers
to the delay previously extracted. Given that, by definition,
l1,t + l2,t ≤ R, any acknowledgement will be processed within
the time-slot duration T , guaranteeing the delivery of a packet
within an IEEE 802.15.4 time-slot.

Algorithm 1 and Algorithm 2 provide the pseudo-code of the
operations of a transmitter and a receiver IoT device running
RTSCA, respectively.

Input: New Slot with ASN asnn starts;

1 Prepare packet to transmit;
2 Compute delay l1,t as in Eq. 1; Wait a delay l1,t;
3 Open the radio in TX mode and transmit packet;
4 if packet is unicast then
5 Wait for ack preparation;
6 Compute delay l2,t as in Eq. 2; Wait a delay l2,t;
7 Open the radio in RX mode and receive ack packet;
8 Process ack packet;
9 end

10 Wait End Slot;
Algorithm 1: Pseudo-code of a Transmitter IoT device
running RTSCA.

Considerations from the adversary point of view. With
our countermeasure in place, the adversary described in Sec-
tion III-B could not predict precisely the time instant when a
target node has the radio enabled in RX mode, for receiving
either a data packet or an acknowledgement. Indeed, to inject



its bogus packet, the adversary should be able to guess the
fraction of time between the activation of the radio of the
target in RX mode and the time where the legitimate transmitter
starts injecting its legitimate packet, that typically lasts for a
short time Tp. Let us assume a receiver locks on a particular
packet. In that case, it could not lock to any other packet in the
same slot, nullifying the effects of the injection of the bogus
packet by the adversary. Overall, assuming a maximum delay
R, the adversary would be forced to make random guessing,
with an average success probability ps =

Tp

R . Based on a
target success probability ps,MAX , the legitimate IoT devices
can establish whether to keep the slot duration to the default
value of T = 10 ms or to increase it, in a way to meet the
requirement Tp

R ≤ ps,MAX . The increase of the slot duration is
always allowed by IEEE 802.15.4, though it has to be traded
off with a reduction of the network throughput.

Input: New Slot with ASN asnn starts;

1 Wait for packet preparation;
2 Compute delay l1,t as in Eq. 1; Wait a delay l1,t;
3 Open the radio in RX mode and receive packet;
4 if packet is unicast then
5 Prepare ack packet;
6 Compute delay l2,t as in Eq. 2; Wait a delay l2,t;
7 Open the radio in TX mode and transmit ack

packet;
8 Wait for ack processing;
9 end

10 Wait End Slot;
Algorithm 2: Pseudo-code of a Receiver IoT device run-
ning RTSCA.

On the adversary side, a more effective strategy would be
to act as a reactive jammer, i.e., to listen for incoming trans-
missions on the wireless channel and, as soon as the SFD of a
packet is received, start injecting its packet. A legitimate packet
that is reactively jammed still generates reception of bytes on
a target IoT device. However, including an erroneous CRC,
this message will be discarded. Therefore, a reactive jammer
can be conceived as a specific form of energy depletion attack.
Note that, although using the same features, this is a different
adversary model than the one in Section III-B, requiring the
adversary to have a dedicated (and more expensive) setup,
necessary to switch (within a very short time-delay) from the
receiving mode (RX) to a high-power transmission mode (TX).
In addition, note that the effect of a reactive jammer on the
energy expenditure of the target is different than a traditional
energy depletion attack. Indeed, the adversary cannot control
the size of a jammed packet, thus not directly controlling the
amount of energy spent by the target. We will evaluate all these
aspects quantitatively in Section VI.

C. Detecting TaP Attacks

In this section, we describe a method that allows detecting
the TaP energy depletion attacks introduced in [6].

The detection strategy is triggered by the reception of a
packet with an erroneous CRC. We recall that an adversary
realizing TaP energy depletion attacks injects packets consist-
ing of a single MAC header byte containing the value 127,
causing the receiver to receive 127 bytes (of noise). However,
given that the adversary has no control over the bytes decoded
by the target, the CRC of such a malicious packet will be
erroneous with overwhelming probability.

Note that an erroneous CRC does not directly imply a TaP
attack. Indeed, the CRC can be wrong also because of non-
malicious interference. However, our observation, based on
real experiments (see Section VI), is that interferenced packets
usually present irregular patterns of erroneous bytes within
the packet, while TaP packets present a trail of consecutive
incorrect bytes, making them distinguishable from interference.

Therefore, as per Alg. 3, the proposed detection logic
discriminates a TaP attack from interference based on error
patterns within the packet. In particular, we focus the attention
on the bytes that have a set of expected values, where it
is possible to detect inconsistent values (e.g., the FrameType
field can have only values from 0 to 3, and other values
are inconsistent and lead to frame discard). If a byte has a
consistent value, we mark this byte as a 0, while a 1 denotes
an inconsistent value. We introduce the notion of transition in
the bytes error patterns, defined as the consecutive presence
of two different error marks, either 0 followed by a 1 or 1
followed by a 0. In brief, if a packet contains either a high
number of errors or a high number of transitions (higher than
predefined thresholds B and τ , respectively), it is marked as a
TaP attack. Otherwise, it is marked as an interference.

Input: A packet with an erroneous CRC is received;

1 Parse the MAC header of the received packet;
2 Evaluate each byte as erroneous (1) or correct (0);
3 Count the number of erroneous bytes eb in the MAC

header ;
4 Count the number of bytes transitions tr;
5 if eb ≥ B then
6 Mark the packet as a TaP attack;
7 Stop reception on this frequency and time-slot;
8 else if tr ≤ τ then
9 Mark the packet as a TaP attack;

10 Stop reception on this frequency and time-slot;
11 else
12 Mark the packet as an interference;
13 Continue receiving on this frequency and time-slot;
14 end

Algorithm 3: Pseudo-code of the TaP Detection Strategy
in RTSCA.

Following detection, the target can take different counter-
measures. For instance, it can decide to stop packet reception
on the particular channel or time-slot where detection occurred,
preventing the adversary from draining the battery further.
In any case, through detection, the target becomes aware of



the presence of the adversary, compromising the stealthiness
objective explained in Section III-B. We discuss the calibration
of the thresholds B and τ and the degree of effectiveness of
our countermeasures n Section VI.

Considerations from the adversary point of view. With
the deployment of the detection strategy above-described, an
adversary carrying out a TaP attack as in [6] could be imme-
diately detected, losing chances to deplete the energy of the
target. If the adversary A would like to avoid detection, it
could increase the number of bytes sent in a TaP packet. In
brief, instead of delivering only a single byte, the adversary
can deliver more bytes, in a way to reduce the number of
erroneous fields at the receiver and avoid detection. Given that
we assume IoT nodes connected at the MAC-layer, to avoid
detection, the adversary should modify the logic of the TaP
attack by transmitting at least the PHY header (1 byte) and
(part of) the MAC header (26 bytes). As experimentally shown
in Section VI, this strategy decreases the energy gain of the
TaP attack on the adversary side.

VI. PERFORMANCE EVALUATION

In this section, we provide the results of our experimental
performance campaign. Section VI-A describes our experimen-
tal setup, while Section VI-B reports experimental results.

A. Experimental Setup

To provide further insights on the performance of RTSCA,
we set up an experimental testbed.

We used two Openmote-b devices as the legitimate IoT
nodes. The Openmote-b hardware platform is among the state-
of-the-art hardware boards for real experimentation and rapid
prototyping of IoT algorithms and solutions [18] [19]. It
integrates the CC2538 SoC by Texas Instruments, a ROM
of 512 kB and a RAM of 32 kB, and it can transmit and
receive wireless packets according to the latest IEEE 802.15.4-
2015 specification. The Openmote-b devices run the OpenWSN
protocol stack, integrating the time-slotted channel access
mechanism of the IEEE 802.15.4-2015 specifications [20].
Conversely, we implemented the adversary A through a USRP
Ettus Research X310 SDR, integrated with a daughterboard
UBX160 [21]. As for the software, we used the GNURadio
development toolkit, extending a reference implementation of
the IEEE 802.15.4 standard in a way to achieve the described
energy depletion attacks [22], [23].

Moreover, we measured the energy consumption of
the devices using an oscilloscope Keysight InfiniVision
DSOX2012A, providing two input channels and a resolution
bandwidth of 100 MHz, by sampling the voltage drop to the
terminals of a 1Ω probe resistor, bridging the pins in series
with the CC2538 chipset. Finally, we used Matlab R2020b for
running simulations on the estimated energy consumption of
all the devices and adversary models assumed in this work.

B. Assessment

In the following, we report some results on the effective-
ness of the countermeasure and TaP attack detection strategy

included in RTSCA. We first report some results on the
TaP attack detection, and then focus on the countermeasure
applying to any energy depletion attack.

TaP Attack Detection. To investigate the effectiveness of
the detection strategy discussed in Section V-C, we ran some
real experiments, by testing both interference and TaP attack
scenarios. To generate interference, we used two transmitting
Ettus Research X310 SDRs, each one emitting packets with
a very high rate (1 every 100 ms), so to generate packets
collisions. Note that such a setup aims to reproduce a realistic
scenario, where interferences and errors occur due to simulta-
neous radio operations. In addition, we replicated and extended
the TaP attack proposed in [6], by configuring A to transmit
an increasing number of bytes in the MAC header, from 1 to
27 bytes, while setting the value of the PHY header always to
the MTU, i.e., 127, so to trigger the reception of a packet of
the MTU size. Then, in line with our detection strategy, after
the occurrence of the first erroneous byte, we evaluated the
number of erroneous bytes eb and transitions tr. As we can see
from Figure 5—showing average results over 300 packets for
each scenario—interference scenarios are mostly characterized
by a relatively high number of transitions, while TaP attack
scenarios usually generate 0 transitions or 1, at most. At the
same time, relatively high number of errors undoubtedly refer
to TaP attack scenarios where A transmit only a few bytes.

Fig. 5. Average number of errors and transitions with interference and TaP
attack scenarios with increasing number of bytes emitted by A. Each bar is
the average of 300 tests, while red lines indicate 95% confidence intervals.

Overall, by setting the detection thresholds to B = 13 and
τ = 1, we can distinguish attacks from interferences up to the
cases of TaP attacks with 26 bytes in 98.3% of the cases, with
a false-positive rate of 0.11. To lower the false-positive rate,
the network administrator can decide in advance the expected
values of some other bytes, in a way to force the adversary
to really transmit them. However, we cannot identify a TaP
attack modified to inject at least 27 bytes, as in this scenario
there are no errors or transitions to count (we assumed that
only errors in the bytes of the MAC header can be detected,
as described in Section III). Overall, the deployment of this



detection method increases the energy required by A to carry
out stealthy energy depletion attacks (more details below).

Random Time-Slotted Channel Access. To characterize
the energy consumption of all the involved entities, we first
measured the time and the energy spent by the Openmote-b
IoT devices to execute the most energy-consuming operations
within a IEEE 802.15.4 time-slot. The corresponding measured
values are reported in Table I, with reference to the notation
introduced in Figure 2 and a default time-slot of T = 10 ms.

TABLE I
DURATION AND ENERGY CONSUMPTION OF ENERGY-CONSUMING

OPERATIONS IN AN IEEE 802.15.4 TIME-SLOT OF T = 10 MS.

Notation Time [ms] Energy [mJ]
TX RAMP UP 0.8125 73.66

TX DATA (127 bytes) 3.7746 465.69
RX RAMP UP 1.375 105.17

RX DATA (127 bytes) 3.7746 347.94
WAIT END SLOT 2.26 90.46

We also evaluated the minimum time Tp that can be set
up on a receiving Openmote-b IoT device without affecting
communication performance with a transmitting device. We
recall that Tp is the time between the power on of the
radio on the RX device and the reception of a packet from
the transmitter TX device. While the default value for the
OpenWSN protocol stack is Tp = 1 ms, we were able to reduce
it to Tp = 0.24 ms without affecting network throughput. With
such a value of Tp, assuming a slot duration of 10 ms and the
value of R indicated in Table I, the probability of a successful
energy depletion attack is ps =

Tp

R = 0.108. Such a success
probability for A can be decreased as desired, by increasing the
time-slot duration. For instance, ps = 0.019 and ps = 0.011
when R = 20 ms and R = 40 ms, respectively. By using the
inverse relationship R =

Tp

ps
, it is possible to obtain the value

of R necessary to achieve the desired ps.
Using the values in Table I, we ran some simulations in

Matlab, to measure the average energy consumption of the
actors in our scenario. We define the following actors.

• TX: it is a legitimate IoT device transmitting a IEEE
802.15.4 data packet.

• RX: it is a legitimate IoT device receiving a IEEE
802.15.4 data packet.

• A1: it is the adversary defined in [6], running a TaP attack
by delivering a packet with a MAC payload of 0 byte.

• A2: it is a reactive jammer, listening for an incoming
packet and then running the TaP attack described in [6].

• A3: it is a reactive jammer, listening for an incoming
packet and then running a TaP attack, by delivering a
packet with a MAC payload of 26 bytes, in a way to
avoid with 100% probability our detection strategy.

• A4: it is a reactive jammer, listening for an incoming
packet and then injecting a standard IEEE 802.15.4 packet
with a payload of 127 bytes.

We set up 10, 000 simulations each for the broadcast and
unicast scenarios, where we varied the data (and ack) delay
value introduced by RTSCA and the size of the exchanged

packets. The energy consumption of all the entities above-
described in a broadcast and unicast setup is shown (with
confidence intervals) in Figure 6 and Figure 7, respectively.

Fig. 6. Energy consumption of Transmitter, Receiver, and Adversary (in
several configurations) after the integration of our strategies, assuming the
delivery of a broadcast packet in a time-slot of T = 10 ms.

Fig. 7. Energy consumption of Transmitter, Receiver, and Adversary (in
several configurations) after the integration of our strategies, assuming the
delivery of a unicast packet in a time-slot of T = 10 ms.

We first highlight that, independently from the scenario, the
energy consumption of the legitimate TX and RX devices
does not change when running our countermeasure and detec-
tion logic. Indeed, as highlighted in Section V, the duration of
the radio activities is the same, and also the generation of the
random delay can be pre-computed, outside the current slot.
Therefore, the consumption of the legitimate IoT devices do
not change after the integration of our schemes. Specifically,
the TX and RX devices consume on average 535.7 mJ and
471.8 mJ in the broadcast scenario and 794.4 mJ and 741.2 mJ
in the unicast scenario, respectively.
A1 is the adversary that consumes the least energy. Indeed,

when our countermeasure and detection are not in place, such
an adversary can successfully inject bogus packets requiring
only transmitting a packet of overall 6 bytes (4 bytes for the
preamble, 1 byte for the SFD, and 1 byte for the PHY header),
spending 355.3 mJ with a broadcast packet and 545.1 mJ with



a unicast packet, respectively. We remark that when RTSCA is
in place, the attack strategy of A1 has no success. Therefore, to
increase its success probability, the adversary has to switch to
a reactive jammer model, i.e., the one of A2. With this model,
the energy consumption of the adversary rises to 444.8 mJ
(broadcast) and 703.9 mJ (unicast), on average. Note that, with
RTSCA in place, the attack strategy of A2 is characterized
by a very low success probability, and also, when successful,
it gets immediately detected by the target. Therefore, even if
successful on a single attempt, it could not proceed further to
exhaust the energy of the target (e.g., the target would stop
radio operations on that time-slot).

To avoid detection while still having chances of success,
the adversary has to behave as a reactive jammer, and to
inject a packet containing at least a MAC header of 26 bytes.
This strategy leads to an energy consumption of 506.3 mJ
(broadcast) and 845.1 mJ (unicast) on average, that is 42.5%
(broadcast) and 55% (unicast) more than A1, respectively. On
the adversary side, note that the strategy A3—i.e., modifying
the TaP attack with the reactive jammer behavior and the
counter-detection logic—is still more convenient than injecting
a full-size packet of 127 bytes, as modelled by the adversarial
strategy A4. Indeed, using the strategy A3 the adversary could
reduce its energy consumption by 47.17% in a broadcast time-
slot and by 28.27% in a unicast time-slot, respectively, still
potentially causing the same damage to the target.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented RTSCA, a solution to
prevent and mitigate energy depletion attacks in IoT net-
works based on the IEEE 802.15.4-2015 PHY/MAC standard.
RTSCA randomizes radio activities execution time within
an IEEE 802.15.4 time-slot, hence efficiently and effectively
preventing an external adversary from guessing the time when
a target can receive bogus packets—a key feature to carry out
any energy depletion attacks. RTSCA also detects recently-
disclosed TaP attacks via a pure-software solution, based on
evaluating error patterns within received packets. RTSCA is
a lightweight, energy-friendly, and flexible solution, requiring
little-to-none additional energy on IoT devices. Moreover,
RTSCA can be flexibly configured to increase robustness, re-
quiring only a corresponding increase in the time-slot duration.

Our experimental performance assessment on real
Openmote-b IoT devices showed that RTSCA reduces
the effectiveness of traditional energy depletion attacks to
at least 10.8% of their nominal effectiveness. To still have
chances of success, the adversary has to deploy reactive
jamming attacks, requiring on average at least 42.5% of
energy more than the traditional setup.

Future work include the extension of RTSCA with capabili-
ties to mitigate reactive jamming attacks, in a way to enhance
the protection against any energy depletion attack further.

ACKNOWLEDGMENTS

This publication was partially supported by awards NPRP-
S-11-0109-180242 from the QNRF-Qatar National Research

Fund, a member of The Qatar Foundation. This work has
been partially supported also by the INTERSCT project, Grant
No. NWA.1162.18.301, funded by Netherlands Organisation
for Scientific Research (NWO). The findings reported herein
are solely responsibility of the authors.

REFERENCES

[1] N. Neshenko, E. Bou-Harb, J. Crichigno et al., “Demystifying IoT
Security: An Exhaustive Survey on IoT Vulnerabilities and a First
Empirical Look on Internet-Scale IoT Exploitations,” IEEE Commun.
Surveys Tuts., vol. 21, no. 3, pp. 2702–2733, 2019.

[2] V. Nguyen, et al., “Energy depletion attacks in low power wireless
networks,” IEEE Access, vol. 7, pp. 51 915–51 932, 2019.

[3] V. Desnitsky and I. Kotenko, “Modeling and analysis of IoT energy
resource exhaustion attacks,” in International Symposium on Intelligent
and Distributed Computing. Springer, 2017, pp. 263–270.

[4] S. Sciancalepore, G. Oligeri, and R. Di Pietro, “Strength of crowd
(SOC)—defeating a reactive jammer in IoT with decoy messages,”
Sensors, vol. 18, no. 10, p. 3492, 2018.

[5] X. Cao, D. M. Shila, Y. Cheng, Z. Yang, Y. Zhou, and J. Chen, “Ghost-
in-zigbee: Energy depletion attack on zigbee-based wireless networks,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 816–829, 2016.

[6] S. Gvozdenovic, et al., “Truncate after Preamble: PHY-Based Starvation
Attacks on IoT Networks,” in Proc. of ACM Conf. on Security and
Privacy in Wireless and Mobile Netw., 2020, p. 89–98.

[7] K.-F. Krentz and C. Meinel, “Denial-of-sleep defenses for IEEE 802.15.
4 coordinated sampled listening (CSL),” Computer Networks, vol. 148,
pp. 60–71, 2019.

[8] H. Pirayesh and H. Zeng, “Jamming Attacks and Anti-Jamming Strate-
gies in Wireless Networks: A Comprehensive Survey,” arXiv preprint
arXiv:2101.00292, 2021.

[9] G. Chen and W. Dong, “Reactive Jamming and Attack Mitigation
over Cross-Technology Communication Links,” ACM Trans. Sen. Netw.,
vol. 17, no. 1, pp. 1–25, 2020.

[10] M. Strasser, B. Danev, and S. Čapkun, “Detection of Reactive Jamming
in Sensor Networks,” ACM Trans. Sen. Netw., vol. 7, no. 2, Sep 2010.

[11] E. Y. Vasserman and N. Hopper, “Vampire attacks: Draining life from
wireless ad hoc sensor networks,” IEEE Transactions on Mobile Com-
puting, vol. 12, no. 2, pp. 318–332, 2011.

[12] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, Apr. 2016.

[13] E. Faulkner, Z. Yun, S. Zhou, Z. Shi, S. Han, and G. B. Giannakis, “An
advanced gnu radio receiver of ieee 802.15.4 oqpsk physical layer,” IEEE
Internet of Things J., pp. 1–1, 2021.

[14] P. Tedeschi, S. Sciancalepore, A. Eliyan, and R. Di Pietro, “LiKe:
Lightweight certificateless key agreement for secure IoT communica-
tions,” IEEE Internet of Things J., vol. 7, no. 1, pp. 621–638, 2020.

[15] S. Sciancalepore, G. Oligeri, G. Piro, et al., “EXCHANge: Securing IoT
via channel anonymity,” Computer Communications, vol. 134, pp. 14–29,
2019.

[16] S. Sciancalepore, M. Vučinić, G. Piro, G. Boggia, and T. Watteyne,
“Link-layer security in TSCH networks: effect on slot duration,” Trans.
on Emerging Telecommun. Technol., vol. 28, no. 1, pp. 1–14, 2017.

[17] S. Sciancalepore and R. Di Pietro, “PPRQ: Privacy-Preserving
MAX/MIN Range Queries in IoT Networks,” IEEE Internet of Things
Journal, 2020.

[18] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, “OpenMote: Open-
Source Prototyping Platform for the Industrial IoT,” in Int. Conf. on Ad
Hoc Networks. Springer, 2015, pp. 211–222.

[19] S. Sciancalepore and R. Di Pietro, “Bittransfer: Mitigating Reactive
Jamming in Electronic Warfare Scenarios,” IEEE Access, vol. 7, pp.
156 175–156 190, 2019.

[20] T. Watteyne, X. Vilajosana, B. Kerkez, et al., “OpenWSN: a standards-
based low-power wireless development environment,” Trans. on Emerg-
ing Telecommunications Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[21] Ettus Research, “UBX160 Daughterboard,” https://www.ettus.com/
product/details/UBX160, 2020, (Accessed: 2021-04-16).

[22] G. Baldini, et al., “Security aspects in software defined radio and
cognitive radio networks: A survey and a way ahead,” IEEE Commun.
Surveys Tuts., vol. 14, no. 2, pp. 355–379, 2011.

[23] B. Bloessl, et al., “A gnu radio-based ieee 802.15. 4 testbed,” (FGSN
2013), pp. 37–40, 2013.


